Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae)
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-01, Vol.10 (1), p.e0115979-e0115979 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0115979 |
---|---|
container_issue | 1 |
container_start_page | e0115979 |
container_title | PloS one |
container_volume | 10 |
creator | Sun, Meng Lu, Ming-Xing Tang, Xiao-Tian Du, Yu-Zhou |
description | The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens. |
doi_str_mv | 10.1371/journal.pone.0115979 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1658056705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422026179</galeid><doaj_id>oai_doaj_org_article_79cf265974094abd90c9d7a21880006c</doaj_id><sourcerecordid>A422026179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2432ceef012daf11bde692ed402c23957189c4a9ba7a1a050cf1dc4921ced21b3</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYqPwHyCIhIS2hxbb-VXzgDRVAypVDG3Aq3W1L6mrJO5sp9r-e9w2mxq0B5SHWOfPfe37-i6K3lIyoUlBP61NZ1uoJxvT4oRQmvGCP4tOKU_YOGckeX60PoleObcmJEumef4yOmFZNs1YRk4jf3m3qY3VbRVvodYqtliixVZiXGGLLi6NjW87aL324PUWAwD12OsG45-z6xjCFe6ddrFu4xt00GgIy72Ei88WuNHKbDxa-Bz_MNJ3WgGev45elFA7fNP_R9Hvr5e_Zt_Hi6tv89nFYixzzvyYpQmTiCWhTEFJ6VJhiKNKCZMs4VlBp1ymwJdQAAWSEVlSJVPOqETF6DIZRe8PuqFEJ3rDnKB5NiVZXgQ7RtH8QCgDa7GxugF7LwxosQ8YWwmwXssaRcFlyfLgckp4CkvFieSqAEanU0JILoPWl_60btmgkth6C_VAdLjT6pWozFakjCc0LYLAWS9gzW2HzotGO4l1DS2abn9vFmonNAnoh3_Qp6vrqQpCAeFZTDhX7kTFRcoYYTkteKAmT1DhU9hoGbqr1CE-SDgfJATG452voHNOzG-u_5-9-jNkPx6xq9BnfuVM3XltWjcE0wMorXEudOyjyZSI3XA8uCF2wyH64Qhp744f6DHpYRqSv8O_Ccw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658056705</pqid></control><display><type>article</type><title>Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae)</title><source>PLoS</source><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Sun, Meng ; Lu, Ming-Xing ; Tang, Xiao-Tian ; Du, Yu-Zhou</creator><contributor>Zhang, Youjun</contributor><creatorcontrib>Sun, Meng ; Lu, Ming-Xing ; Tang, Xiao-Tian ; Du, Yu-Zhou ; Zhang, Youjun</creatorcontrib><description>The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0115979</identifier><identifier>PMID: 25585250</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Adults ; Analysis ; Animals ; Borers ; Cloning ; Crop yield ; Data processing ; Developmental stages ; Elongation ; Entomology ; Epidermis ; Error analysis ; Error reduction ; Experiments ; Fat body ; Female ; Foregut ; Gene Expression ; Gene Expression Profiling ; Genes ; Genes, Essential ; Genes, Insect - genetics ; Glyceraldehyde-3-phosphate dehydrogenase ; Heat ; Heat shock proteins ; Hemocytes ; Hindgut ; Horticulture ; Host plants ; Humidity ; Insects ; Instars ; Larvae ; Lepidoptera ; Male ; Malpighian tubules ; Midgut ; Moths - genetics ; Nitrogen ; Noctuidae ; Normalizing ; Oryza ; Peptide Elongation Factor 1 - genetics ; Real time ; Real-Time Polymerase Chain Reaction ; Ribonucleic acid ; Ribosomal protein S13 ; Ribosomal Proteins - genetics ; RNA ; RNA, Ribosomal, 18S - genetics ; rRNA 18S ; Salivary gland ; Salivary glands ; Sesamia inferens ; Spodoptera exigua ; Tubulin</subject><ispartof>PloS one, 2015-01, Vol.10 (1), p.e0115979-e0115979</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Sun et al 2015 Sun et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2432ceef012daf11bde692ed402c23957189c4a9ba7a1a050cf1dc4921ced21b3</citedby><cites>FETCH-LOGICAL-c692t-2432ceef012daf11bde692ed402c23957189c4a9ba7a1a050cf1dc4921ced21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293147/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293147/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25585250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Youjun</contributor><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Lu, Ming-Xing</creatorcontrib><creatorcontrib>Tang, Xiao-Tian</creatorcontrib><creatorcontrib>Du, Yu-Zhou</creatorcontrib><title>Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.</description><subject>Actin</subject><subject>Adults</subject><subject>Analysis</subject><subject>Animals</subject><subject>Borers</subject><subject>Cloning</subject><subject>Crop yield</subject><subject>Data processing</subject><subject>Developmental stages</subject><subject>Elongation</subject><subject>Entomology</subject><subject>Epidermis</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Experiments</subject><subject>Fat body</subject><subject>Female</subject><subject>Foregut</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genes, Essential</subject><subject>Genes, Insect - genetics</subject><subject>Glyceraldehyde-3-phosphate dehydrogenase</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Hemocytes</subject><subject>Hindgut</subject><subject>Horticulture</subject><subject>Host plants</subject><subject>Humidity</subject><subject>Insects</subject><subject>Instars</subject><subject>Larvae</subject><subject>Lepidoptera</subject><subject>Male</subject><subject>Malpighian tubules</subject><subject>Midgut</subject><subject>Moths - genetics</subject><subject>Nitrogen</subject><subject>Noctuidae</subject><subject>Normalizing</subject><subject>Oryza</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Real time</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>Ribosomal protein S13</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>rRNA 18S</subject><subject>Salivary gland</subject><subject>Salivary glands</subject><subject>Sesamia inferens</subject><subject>Spodoptera exigua</subject><subject>Tubulin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYqPwHyCIhIS2hxbb-VXzgDRVAypVDG3Aq3W1L6mrJO5sp9r-e9w2mxq0B5SHWOfPfe37-i6K3lIyoUlBP61NZ1uoJxvT4oRQmvGCP4tOKU_YOGckeX60PoleObcmJEumef4yOmFZNs1YRk4jf3m3qY3VbRVvodYqtliixVZiXGGLLi6NjW87aL324PUWAwD12OsG45-z6xjCFe6ddrFu4xt00GgIy72Ei88WuNHKbDxa-Bz_MNJ3WgGev45elFA7fNP_R9Hvr5e_Zt_Hi6tv89nFYixzzvyYpQmTiCWhTEFJ6VJhiKNKCZMs4VlBp1ymwJdQAAWSEVlSJVPOqETF6DIZRe8PuqFEJ3rDnKB5NiVZXgQ7RtH8QCgDa7GxugF7LwxosQ8YWwmwXssaRcFlyfLgckp4CkvFieSqAEanU0JILoPWl_60btmgkth6C_VAdLjT6pWozFakjCc0LYLAWS9gzW2HzotGO4l1DS2abn9vFmonNAnoh3_Qp6vrqQpCAeFZTDhX7kTFRcoYYTkteKAmT1DhU9hoGbqr1CE-SDgfJATG452voHNOzG-u_5-9-jNkPx6xq9BnfuVM3XltWjcE0wMorXEudOyjyZSI3XA8uCF2wyH64Qhp744f6DHpYRqSv8O_Ccw</recordid><startdate>20150113</startdate><enddate>20150113</enddate><creator>Sun, Meng</creator><creator>Lu, Ming-Xing</creator><creator>Tang, Xiao-Tian</creator><creator>Du, Yu-Zhou</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150113</creationdate><title>Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae)</title><author>Sun, Meng ; Lu, Ming-Xing ; Tang, Xiao-Tian ; Du, Yu-Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2432ceef012daf11bde692ed402c23957189c4a9ba7a1a050cf1dc4921ced21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actin</topic><topic>Adults</topic><topic>Analysis</topic><topic>Animals</topic><topic>Borers</topic><topic>Cloning</topic><topic>Crop yield</topic><topic>Data processing</topic><topic>Developmental stages</topic><topic>Elongation</topic><topic>Entomology</topic><topic>Epidermis</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Experiments</topic><topic>Fat body</topic><topic>Female</topic><topic>Foregut</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genes, Essential</topic><topic>Genes, Insect - genetics</topic><topic>Glyceraldehyde-3-phosphate dehydrogenase</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Hemocytes</topic><topic>Hindgut</topic><topic>Horticulture</topic><topic>Host plants</topic><topic>Humidity</topic><topic>Insects</topic><topic>Instars</topic><topic>Larvae</topic><topic>Lepidoptera</topic><topic>Male</topic><topic>Malpighian tubules</topic><topic>Midgut</topic><topic>Moths - genetics</topic><topic>Nitrogen</topic><topic>Noctuidae</topic><topic>Normalizing</topic><topic>Oryza</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Real time</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>Ribosomal protein S13</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>rRNA 18S</topic><topic>Salivary gland</topic><topic>Salivary glands</topic><topic>Sesamia inferens</topic><topic>Spodoptera exigua</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Lu, Ming-Xing</creatorcontrib><creatorcontrib>Tang, Xiao-Tian</creatorcontrib><creatorcontrib>Du, Yu-Zhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Meng</au><au>Lu, Ming-Xing</au><au>Tang, Xiao-Tian</au><au>Du, Yu-Zhou</au><au>Zhang, Youjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-01-13</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>e0115979</spage><epage>e0115979</epage><pages>e0115979-e0115979</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25585250</pmid><doi>10.1371/journal.pone.0115979</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-01, Vol.10 (1), p.e0115979-e0115979 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1658056705 |
source | PLoS; MEDLINE; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Actin Adults Analysis Animals Borers Cloning Crop yield Data processing Developmental stages Elongation Entomology Epidermis Error analysis Error reduction Experiments Fat body Female Foregut Gene Expression Gene Expression Profiling Genes Genes, Essential Genes, Insect - genetics Glyceraldehyde-3-phosphate dehydrogenase Heat Heat shock proteins Hemocytes Hindgut Horticulture Host plants Humidity Insects Instars Larvae Lepidoptera Male Malpighian tubules Midgut Moths - genetics Nitrogen Noctuidae Normalizing Oryza Peptide Elongation Factor 1 - genetics Real time Real-Time Polymerase Chain Reaction Ribonucleic acid Ribosomal protein S13 Ribosomal Proteins - genetics RNA RNA, Ribosomal, 18S - genetics rRNA 18S Salivary gland Salivary glands Sesamia inferens Spodoptera exigua Tubulin |
title | Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20valid%20reference%20genes%20for%20quantitative%20real-time%20PCR%20analysis%20in%20Sesamia%20inferens%20(Lepidoptera:%20Noctuidae)&rft.jtitle=PloS%20one&rft.au=Sun,%20Meng&rft.date=2015-01-13&rft.volume=10&rft.issue=1&rft.spage=e0115979&rft.epage=e0115979&rft.pages=e0115979-e0115979&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0115979&rft_dat=%3Cgale_plos_%3EA422026179%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658056705&rft_id=info:pmid/25585250&rft_galeid=A422026179&rft_doaj_id=oai_doaj_org_article_79cf265974094abd90c9d7a21880006c&rfr_iscdi=true |