Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice
The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differ...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-02, Vol.10 (2), p.e0116704-e0116704 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0116704 |
---|---|
container_issue | 2 |
container_start_page | e0116704 |
container_title | PloS one |
container_volume | 10 |
creator | Ericsson, Aaron C Davis, J Wade Spollen, William Bivens, Nathan Givan, Scott Hagan, Catherine E McIntosh, Mark Franklin, Craig L |
description | The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power. |
doi_str_mv | 10.1371/journal.pone.0116704 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1654934827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425892454</galeid><doaj_id>oai_doaj_org_article_aa51e4ec109c4ccdb4484083cdb4f149</doaj_id><sourcerecordid>A425892454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-9ded15ebcd0814bc4877b6482c9342acf647a2dc863d9a3c991bd30070db35843</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsYtPcZIbpKoqsFKlSpxuLR8mWS_ZeGs7Fbw9TjetNqgXKBex_3zzOzOeybKXGK0wLfGHrRt8L7vV3vWwQhjzErFH2SmuKVlygujjo_VJ9iyELUIFrTh_mp2QgpcFqtlppi6aBnQMuWvyG-iN87nsTd5CD9HqXEn9q_VuSJLr87iBXLvd3gUbbdqnmFFKBrLLd1Z7p6yLctRtrzyYUYTn2ZNGdgFeTO9F9uPTxffzL8vLq8_r87PLpS6LKi5rAwYXoLRBFWZKs6osFWcV0TVlROqGs1ISoytOTS2prmusDEWoREbRomJ0kb0--O47F8RUniAwL1hyqEiZiPWBME5uxd7bnfR_hJNW3ArOt0L6lHYHQsoCAwONUa2Z1kYxVjFU0XHV4GS4yD5Opw1qB0ZDH73sZqbzL73diNbdCEYJZwQng3eTgXfXA4QodjZo6DrZgxtu_5sjxgkuEvrmH_Th7CaqlSkB2zcunatHU3HGSFHVhBVjlVYPUOkxkC4r9VJjkz4LeD8LSEyE37GVQwhi_e3r_7NXP-fs2yN2A7KLm-C6YeysMAfZAUz9FYKH5r7IGIlxFO6qIcZRENMopLBXxxd0H3TX-_QvyRMDow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654934827</pqid></control><display><type>article</type><title>Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ericsson, Aaron C ; Davis, J Wade ; Spollen, William ; Bivens, Nathan ; Givan, Scott ; Hagan, Catherine E ; McIntosh, Mark ; Franklin, Craig L</creator><contributor>Heimesaat, Markus M.</contributor><creatorcontrib>Ericsson, Aaron C ; Davis, J Wade ; Spollen, William ; Bivens, Nathan ; Givan, Scott ; Hagan, Catherine E ; McIntosh, Mark ; Franklin, Craig L ; Heimesaat, Markus M.</creatorcontrib><description>The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0116704</identifier><identifier>PMID: 25675094</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Animals, Laboratory ; Autism ; Biodiversity ; Cluster Analysis ; Deoxyribonucleic acid ; DNA ; Fecal microflora ; Feces - microbiology ; Female ; Gastrointestinal Tract - microbiology ; House mouse ; Inbreeding ; Informatics ; Intestinal microflora ; Laboratory animals ; Metagenome ; Mice ; Mice, Inbred Strains - genetics ; Mice, Inbred Strains - microbiology ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; Phenotypes ; RNA, Ribosomal, 16S - genetics ; Rodents ; Statistical analysis ; Statistical methods ; Streptococcus infections ; Trajectory analysis ; Weaning</subject><ispartof>PloS one, 2015-02, Vol.10 (2), p.e0116704-e0116704</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ericsson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Ericsson et al 2015 Ericsson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-9ded15ebcd0814bc4877b6482c9342acf647a2dc863d9a3c991bd30070db35843</citedby><cites>FETCH-LOGICAL-c758t-9ded15ebcd0814bc4877b6482c9342acf647a2dc863d9a3c991bd30070db35843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326421/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25675094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heimesaat, Markus M.</contributor><creatorcontrib>Ericsson, Aaron C</creatorcontrib><creatorcontrib>Davis, J Wade</creatorcontrib><creatorcontrib>Spollen, William</creatorcontrib><creatorcontrib>Bivens, Nathan</creatorcontrib><creatorcontrib>Givan, Scott</creatorcontrib><creatorcontrib>Hagan, Catherine E</creatorcontrib><creatorcontrib>McIntosh, Mark</creatorcontrib><creatorcontrib>Franklin, Craig L</creatorcontrib><title>Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power.</description><subject>Animal models</subject><subject>Animals</subject><subject>Animals, Laboratory</subject><subject>Autism</subject><subject>Biodiversity</subject><subject>Cluster Analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fecal microflora</subject><subject>Feces - microbiology</subject><subject>Female</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>House mouse</subject><subject>Inbreeding</subject><subject>Informatics</subject><subject>Intestinal microflora</subject><subject>Laboratory animals</subject><subject>Metagenome</subject><subject>Mice</subject><subject>Mice, Inbred Strains - genetics</subject><subject>Mice, Inbred Strains - microbiology</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Phenotypes</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Rodents</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Streptococcus infections</subject><subject>Trajectory analysis</subject><subject>Weaning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsYtPcZIbpKoqsFKlSpxuLR8mWS_ZeGs7Fbw9TjetNqgXKBex_3zzOzOeybKXGK0wLfGHrRt8L7vV3vWwQhjzErFH2SmuKVlygujjo_VJ9iyELUIFrTh_mp2QgpcFqtlppi6aBnQMuWvyG-iN87nsTd5CD9HqXEn9q_VuSJLr87iBXLvd3gUbbdqnmFFKBrLLd1Z7p6yLctRtrzyYUYTn2ZNGdgFeTO9F9uPTxffzL8vLq8_r87PLpS6LKi5rAwYXoLRBFWZKs6osFWcV0TVlROqGs1ISoytOTS2prmusDEWoREbRomJ0kb0--O47F8RUniAwL1hyqEiZiPWBME5uxd7bnfR_hJNW3ArOt0L6lHYHQsoCAwONUa2Z1kYxVjFU0XHV4GS4yD5Opw1qB0ZDH73sZqbzL73diNbdCEYJZwQng3eTgXfXA4QodjZo6DrZgxtu_5sjxgkuEvrmH_Th7CaqlSkB2zcunatHU3HGSFHVhBVjlVYPUOkxkC4r9VJjkz4LeD8LSEyE37GVQwhi_e3r_7NXP-fs2yN2A7KLm-C6YeysMAfZAUz9FYKH5r7IGIlxFO6qIcZRENMopLBXxxd0H3TX-_QvyRMDow</recordid><startdate>20150212</startdate><enddate>20150212</enddate><creator>Ericsson, Aaron C</creator><creator>Davis, J Wade</creator><creator>Spollen, William</creator><creator>Bivens, Nathan</creator><creator>Givan, Scott</creator><creator>Hagan, Catherine E</creator><creator>McIntosh, Mark</creator><creator>Franklin, Craig L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150212</creationdate><title>Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice</title><author>Ericsson, Aaron C ; Davis, J Wade ; Spollen, William ; Bivens, Nathan ; Givan, Scott ; Hagan, Catherine E ; McIntosh, Mark ; Franklin, Craig L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-9ded15ebcd0814bc4877b6482c9342acf647a2dc863d9a3c991bd30070db35843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Animals, Laboratory</topic><topic>Autism</topic><topic>Biodiversity</topic><topic>Cluster Analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fecal microflora</topic><topic>Feces - microbiology</topic><topic>Female</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>House mouse</topic><topic>Inbreeding</topic><topic>Informatics</topic><topic>Intestinal microflora</topic><topic>Laboratory animals</topic><topic>Metagenome</topic><topic>Mice</topic><topic>Mice, Inbred Strains - genetics</topic><topic>Mice, Inbred Strains - microbiology</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Phenotypes</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Rodents</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Streptococcus infections</topic><topic>Trajectory analysis</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ericsson, Aaron C</creatorcontrib><creatorcontrib>Davis, J Wade</creatorcontrib><creatorcontrib>Spollen, William</creatorcontrib><creatorcontrib>Bivens, Nathan</creatorcontrib><creatorcontrib>Givan, Scott</creatorcontrib><creatorcontrib>Hagan, Catherine E</creatorcontrib><creatorcontrib>McIntosh, Mark</creatorcontrib><creatorcontrib>Franklin, Craig L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ericsson, Aaron C</au><au>Davis, J Wade</au><au>Spollen, William</au><au>Bivens, Nathan</au><au>Givan, Scott</au><au>Hagan, Catherine E</au><au>McIntosh, Mark</au><au>Franklin, Craig L</au><au>Heimesaat, Markus M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-02-12</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>e0116704</spage><epage>e0116704</epage><pages>e0116704-e0116704</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25675094</pmid><doi>10.1371/journal.pone.0116704</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-02, Vol.10 (2), p.e0116704-e0116704 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1654934827 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal models Animals Animals, Laboratory Autism Biodiversity Cluster Analysis Deoxyribonucleic acid DNA Fecal microflora Feces - microbiology Female Gastrointestinal Tract - microbiology House mouse Inbreeding Informatics Intestinal microflora Laboratory animals Metagenome Mice Mice, Inbred Strains - genetics Mice, Inbred Strains - microbiology Microbiota Microbiota (Symbiotic organisms) Microorganisms Phenotypes RNA, Ribosomal, 16S - genetics Rodents Statistical analysis Statistical methods Streptococcus infections Trajectory analysis Weaning |
title | Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20vendor%20and%20genetic%20background%20on%20the%20composition%20of%20the%20fecal%20microbiota%20of%20inbred%20mice&rft.jtitle=PloS%20one&rft.au=Ericsson,%20Aaron%20C&rft.date=2015-02-12&rft.volume=10&rft.issue=2&rft.spage=e0116704&rft.epage=e0116704&rft.pages=e0116704-e0116704&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0116704&rft_dat=%3Cgale_plos_%3EA425892454%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654934827&rft_id=info:pmid/25675094&rft_galeid=A425892454&rft_doaj_id=oai_doaj_org_article_aa51e4ec109c4ccdb4484083cdb4f149&rfr_iscdi=true |