Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-02, Vol.10 (2), p.e0116473-e0116473 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0116473 |
---|---|
container_issue | 2 |
container_start_page | e0116473 |
container_title | PloS one |
container_volume | 10 |
creator | Betzer, Cristine Movius, A James Shi, Min Gai, Wei-Ping Zhang, Jing Jensen, Poul Henning |
description | Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes. |
doi_str_mv | 10.1371/journal.pone.0116473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1652196964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_849d21cd1ec24f19957945852bb8ef64</doaj_id><sourcerecordid>3582835741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-5b4e23a697c9d0836c832baaa4f9045ee80c264714f22f85a78e9c1376d9a3943</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfIIjEhk0Gv2NvkFDFY6RKbEBiZzl-DB4lvsFOKvWz-BG-icxMWrWIlV_nHJ9zdarqJUYbTFv8bg9zTqbfjJD8BmEsWEsfVedYUdIIgujje_uz6lkpe4Q4lUI8rc4IF1xhJs-rH1vn0xRDtGaKkGoIdblJZpygwGD6esww-ZhK3cXkYtrVE9QDJBh8jrY2ydXQx916_PO7Wciz7RfG8-pJMH3xL9b1ovr-6eO3yy_N1dfP28sPV43lREwN75gn1AjVWuWQpMJKSjpjDAsKMe69RJYs0TALhATJTSu9sssAhFOGKkYvqtcn3bGHotehFI0FJ1gJJQ6I7QnhwOz1mONg8o0GE_XxAvJOmzzFxbWWTDmCrcPeEhawUrxVjEtOuk76cNR6v_42d4N3dpldNv0D0YcvKf7UO7jWjGIlFV8E3q4CGX7Nvkx6iMX6vjfJw3z0TTFpOaUL9M0_0P-nYyeUzVBK9uHODEb6UJRblj4URa9FWWiv7ge5I902g_4FkSC9cA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652196964</pqid></control><display><type>article</type><title>Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Betzer, Cristine ; Movius, A James ; Shi, Min ; Gai, Wei-Ping ; Zhang, Jing ; Jensen, Poul Henning</creator><contributor>Greggio, Elisa</contributor><creatorcontrib>Betzer, Cristine ; Movius, A James ; Shi, Min ; Gai, Wei-Ping ; Zhang, Jing ; Jensen, Poul Henning ; Greggio, Elisa</creatorcontrib><description>Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0116473</identifier><identifier>PMID: 25659148</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>alpha-Synuclein - chemistry ; alpha-Synuclein - metabolism ; Animals ; Antibodies ; Axons ; Binding ; Brain ; Brain - metabolism ; Brain research ; Data processing ; Dementia disorders ; Filaments ; Gene expression ; Glial fibrillary acidic protein ; Glutamate decarboxylase ; Heritability ; Humans ; Immunoprecipitation ; Lewy bodies ; Ligands ; Mass spectrometry ; Mass spectroscopy ; Medicine ; Mitochondria ; Monomers ; Movement disorders ; Mutation ; Myelin ; Myelin proteolipid protein ; Nerve endings ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - metabolism ; Neurodegenerative diseases ; Neurosciences ; Oligomers ; Parkinson's disease ; Parkinsons disease ; Pathology ; Physiology ; Protein Binding ; Protein Multimerization ; Proteins ; Proteolipid protein ; Proteomics - methods ; Quantitative analysis ; Swine ; Synapsin ; Synaptosomes ; Synaptosomes - chemistry ; Synaptosomes - metabolism ; Synuclein ; Terminals</subject><ispartof>PloS one, 2015-02, Vol.10 (2), p.e0116473-e0116473</ispartof><rights>2015 Betzer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Betzer et al 2015 Betzer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-5b4e23a697c9d0836c832baaa4f9045ee80c264714f22f85a78e9c1376d9a3943</citedby><cites>FETCH-LOGICAL-c526t-5b4e23a697c9d0836c832baaa4f9045ee80c264714f22f85a78e9c1376d9a3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319895/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319895/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25659148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Greggio, Elisa</contributor><creatorcontrib>Betzer, Cristine</creatorcontrib><creatorcontrib>Movius, A James</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Gai, Wei-Ping</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Jensen, Poul Henning</creatorcontrib><title>Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.</description><subject>alpha-Synuclein - chemistry</subject><subject>alpha-Synuclein - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Axons</subject><subject>Binding</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain research</subject><subject>Data processing</subject><subject>Dementia disorders</subject><subject>Filaments</subject><subject>Gene expression</subject><subject>Glial fibrillary acidic protein</subject><subject>Glutamate decarboxylase</subject><subject>Heritability</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Lewy bodies</subject><subject>Ligands</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Mitochondria</subject><subject>Monomers</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Myelin</subject><subject>Myelin proteolipid protein</subject><subject>Nerve endings</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Neurosciences</subject><subject>Oligomers</subject><subject>Parkinson's disease</subject><subject>Parkinsons disease</subject><subject>Pathology</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Proteolipid protein</subject><subject>Proteomics - methods</subject><subject>Quantitative analysis</subject><subject>Swine</subject><subject>Synapsin</subject><subject>Synaptosomes</subject><subject>Synaptosomes - chemistry</subject><subject>Synaptosomes - metabolism</subject><subject>Synuclein</subject><subject>Terminals</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfIIjEhk0Gv2NvkFDFY6RKbEBiZzl-DB4lvsFOKvWz-BG-icxMWrWIlV_nHJ9zdarqJUYbTFv8bg9zTqbfjJD8BmEsWEsfVedYUdIIgujje_uz6lkpe4Q4lUI8rc4IF1xhJs-rH1vn0xRDtGaKkGoIdblJZpygwGD6esww-ZhK3cXkYtrVE9QDJBh8jrY2ydXQx916_PO7Wciz7RfG8-pJMH3xL9b1ovr-6eO3yy_N1dfP28sPV43lREwN75gn1AjVWuWQpMJKSjpjDAsKMe69RJYs0TALhATJTSu9sssAhFOGKkYvqtcn3bGHotehFI0FJ1gJJQ6I7QnhwOz1mONg8o0GE_XxAvJOmzzFxbWWTDmCrcPeEhawUrxVjEtOuk76cNR6v_42d4N3dpldNv0D0YcvKf7UO7jWjGIlFV8E3q4CGX7Nvkx6iMX6vjfJw3z0TTFpOaUL9M0_0P-nYyeUzVBK9uHODEb6UJRblj4URa9FWWiv7ge5I902g_4FkSC9cA</recordid><startdate>20150206</startdate><enddate>20150206</enddate><creator>Betzer, Cristine</creator><creator>Movius, A James</creator><creator>Shi, Min</creator><creator>Gai, Wei-Ping</creator><creator>Zhang, Jing</creator><creator>Jensen, Poul Henning</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150206</creationdate><title>Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein</title><author>Betzer, Cristine ; Movius, A James ; Shi, Min ; Gai, Wei-Ping ; Zhang, Jing ; Jensen, Poul Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-5b4e23a697c9d0836c832baaa4f9045ee80c264714f22f85a78e9c1376d9a3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alpha-Synuclein - chemistry</topic><topic>alpha-Synuclein - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Axons</topic><topic>Binding</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain research</topic><topic>Data processing</topic><topic>Dementia disorders</topic><topic>Filaments</topic><topic>Gene expression</topic><topic>Glial fibrillary acidic protein</topic><topic>Glutamate decarboxylase</topic><topic>Heritability</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Lewy bodies</topic><topic>Ligands</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Mitochondria</topic><topic>Monomers</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Myelin</topic><topic>Myelin proteolipid protein</topic><topic>Nerve endings</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Neurosciences</topic><topic>Oligomers</topic><topic>Parkinson's disease</topic><topic>Parkinsons disease</topic><topic>Pathology</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Proteolipid protein</topic><topic>Proteomics - methods</topic><topic>Quantitative analysis</topic><topic>Swine</topic><topic>Synapsin</topic><topic>Synaptosomes</topic><topic>Synaptosomes - chemistry</topic><topic>Synaptosomes - metabolism</topic><topic>Synuclein</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betzer, Cristine</creatorcontrib><creatorcontrib>Movius, A James</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Gai, Wei-Ping</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Jensen, Poul Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betzer, Cristine</au><au>Movius, A James</au><au>Shi, Min</au><au>Gai, Wei-Ping</au><au>Zhang, Jing</au><au>Jensen, Poul Henning</au><au>Greggio, Elisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-02-06</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>e0116473</spage><epage>e0116473</epage><pages>e0116473-e0116473</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25659148</pmid><doi>10.1371/journal.pone.0116473</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-02, Vol.10 (2), p.e0116473-e0116473 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1652196964 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | alpha-Synuclein - chemistry alpha-Synuclein - metabolism Animals Antibodies Axons Binding Brain Brain - metabolism Brain research Data processing Dementia disorders Filaments Gene expression Glial fibrillary acidic protein Glutamate decarboxylase Heritability Humans Immunoprecipitation Lewy bodies Ligands Mass spectrometry Mass spectroscopy Medicine Mitochondria Monomers Movement disorders Mutation Myelin Myelin proteolipid protein Nerve endings Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - metabolism Neurodegenerative diseases Neurosciences Oligomers Parkinson's disease Parkinsons disease Pathology Physiology Protein Binding Protein Multimerization Proteins Proteolipid protein Proteomics - methods Quantitative analysis Swine Synapsin Synaptosomes Synaptosomes - chemistry Synaptosomes - metabolism Synuclein Terminals |
title | Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20synaptosomal%20proteins%20binding%20to%20monomeric%20and%20oligomeric%20%CE%B1-synuclein&rft.jtitle=PloS%20one&rft.au=Betzer,%20Cristine&rft.date=2015-02-06&rft.volume=10&rft.issue=2&rft.spage=e0116473&rft.epage=e0116473&rft.pages=e0116473-e0116473&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0116473&rft_dat=%3Cproquest_plos_%3E3582835741%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652196964&rft_id=info:pmid/25659148&rft_doaj_id=oai_doaj_org_article_849d21cd1ec24f19957945852bb8ef64&rfr_iscdi=true |