Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells

While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-02, Vol.10 (2), p.e0117021-e0117021
Hauptverfasser: Garay, Tamás, Kenessey, István, Molnár, Eszter, Juhász, Éva, Réti, Andrea, László, Viktória, Rózsás, Anita, Dobos, Judit, Döme, Balázs, Berger, Walter, Klepetko, Walter, Tóvári, József, Tímár, József, Hegedűs, Balázs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0117021
container_issue 2
container_start_page e0117021
container_title PloS one
container_volume 10
creator Garay, Tamás
Kenessey, István
Molnár, Eszter
Juhász, Éva
Réti, Andrea
László, Viktória
Rózsás, Anita
Dobos, Judit
Döme, Balázs
Berger, Walter
Klepetko, Walter
Tóvári, József
Tímár, József
Hegedűs, Balázs
description While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.
doi_str_mv 10.1371/journal.pone.0117021
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1650969756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425976427</galeid><doaj_id>oai_doaj_org_article_8fb8cc26231e46cc9bbbaa2d4e3e7083</doaj_id><sourcerecordid>A425976427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4SBfbsZNwgVSmDSpNbBqDW8txTlpXjl1iZ6Nvj9NmVYt2gXxhy-f7f_sc-0TRa5ROEMnR6dL2nRF6srIGJilCeYrRk-gYlQQnDKfk6d76KHrh3DJNKSkYex4dYcoyVhJ0HN1fd2DWWnhlTazMQlVqWCbK1L2EOpagdVyD8IsQjVvQwthWfIo72MYdGBcUd8qvB-DLzfQibnsvjD-9vj3_Ht8rXSd-vYKddmPpXkbPGqEdvBrnk-jnxfnt2bfk8urr7Gx6mUhWYp8Utagx5A2juGGESklKoHWFGMYMEBMFKhtcUZrVOMvzkF9KcV6wAamkqCpyEr3d-q60dXysmeOI0bRkZU5ZIGZborZiyVedakW35lYovtmw3ZyLziupgRdNVUiJGSYIMiZlWVWVELjOgECeFiR4fR5P66sWagnGd0IfmB5GjFrwub3jGUGU5mUw-DAadPZ3D87zVrmhYMKA7Tf3xtkA5wF99w_6eHYjNRchAWUaG86VgymfZpiWOcvw4DV5hAqjhlbJ8MEaFfYPBB8PBIHx8MfPRe8cn_24-X_26tch-36PXYDQfuGs7oc_6Q7BbAvKzjrXQbMrMkr50B8P1eBDf_CxP4Lszf4D7UQPDUH-AhjdC6E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650969756</pqid></control><display><type>article</type><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs</creator><contributor>Smalley, Keiran</contributor><creatorcontrib>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs ; Smalley, Keiran</creatorcontrib><description>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0117021</identifier><identifier>PMID: 25646931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Activation ; Animal models ; Animals ; Anticancer properties ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Biochemistry ; Biotechnology ; Bone disorder agents ; Breast cancer ; Cancer therapies ; Cell cycle ; Cell death ; Cell growth ; Cell Line, Tumor ; Cell migration ; Cell proliferation ; Cell Survival ; Cisplatin ; Colonization ; Colorectal cancer ; Cytotoxicity ; Diphosphonates - therapeutic use ; Enzymes ; GTP Phosphohydrolases - genetics ; Health aspects ; Hepatocytes ; Humans ; Imidazoles - therapeutic use ; Inhibition ; Kinases ; Liver ; Male ; Medical research ; Melanoma ; Melanoma - drug therapy ; Melanoma - genetics ; Melanoma - pathology ; Membrane Proteins - genetics ; Metastasis ; Mice ; Mice, SCID ; Mutation ; Oncology ; Pathology ; Pharmacology ; Poly(ADP-ribose) polymerase ; Prenylation - drug effects ; Prostate ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; PTEN Phosphohydrolase - genetics ; PTEN protein ; Raf protein ; Ribosomal protein S6 ; Sensitivity ; Spleen ; Surgery ; Synergism ; Thoracic surgery ; Xenografts ; Xenotransplantation ; Zoledronic Acid</subject><ispartof>PloS one, 2015-02, Vol.10 (2), p.e0117021-e0117021</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Garay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Garay et al 2015 Garay et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</citedby><cites>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25646931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Smalley, Keiran</contributor><creatorcontrib>Garay, Tamás</creatorcontrib><creatorcontrib>Kenessey, István</creatorcontrib><creatorcontrib>Molnár, Eszter</creatorcontrib><creatorcontrib>Juhász, Éva</creatorcontrib><creatorcontrib>Réti, Andrea</creatorcontrib><creatorcontrib>László, Viktória</creatorcontrib><creatorcontrib>Rózsás, Anita</creatorcontrib><creatorcontrib>Dobos, Judit</creatorcontrib><creatorcontrib>Döme, Balázs</creatorcontrib><creatorcontrib>Berger, Walter</creatorcontrib><creatorcontrib>Klepetko, Walter</creatorcontrib><creatorcontrib>Tóvári, József</creatorcontrib><creatorcontrib>Tímár, József</creatorcontrib><creatorcontrib>Hegedűs, Balázs</creatorcontrib><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</description><subject>Acids</subject><subject>Activation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Bone disorder agents</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Cell Survival</subject><subject>Cisplatin</subject><subject>Colonization</subject><subject>Colorectal cancer</subject><subject>Cytotoxicity</subject><subject>Diphosphonates - therapeutic use</subject><subject>Enzymes</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>Health aspects</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Imidazoles - therapeutic use</subject><subject>Inhibition</subject><subject>Kinases</subject><subject>Liver</subject><subject>Male</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - genetics</subject><subject>Melanoma - pathology</subject><subject>Membrane Proteins - genetics</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Pharmacology</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Prenylation - drug effects</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN protein</subject><subject>Raf protein</subject><subject>Ribosomal protein S6</subject><subject>Sensitivity</subject><subject>Spleen</subject><subject>Surgery</subject><subject>Synergism</subject><subject>Thoracic surgery</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><subject>Zoledronic Acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4SBfbsZNwgVSmDSpNbBqDW8txTlpXjl1iZ6Nvj9NmVYt2gXxhy-f7f_sc-0TRa5ROEMnR6dL2nRF6srIGJilCeYrRk-gYlQQnDKfk6d76KHrh3DJNKSkYex4dYcoyVhJ0HN1fd2DWWnhlTazMQlVqWCbK1L2EOpagdVyD8IsQjVvQwthWfIo72MYdGBcUd8qvB-DLzfQibnsvjD-9vj3_Ht8rXSd-vYKddmPpXkbPGqEdvBrnk-jnxfnt2bfk8urr7Gx6mUhWYp8Utagx5A2juGGESklKoHWFGMYMEBMFKhtcUZrVOMvzkF9KcV6wAamkqCpyEr3d-q60dXysmeOI0bRkZU5ZIGZborZiyVedakW35lYovtmw3ZyLziupgRdNVUiJGSYIMiZlWVWVELjOgECeFiR4fR5P66sWagnGd0IfmB5GjFrwub3jGUGU5mUw-DAadPZ3D87zVrmhYMKA7Tf3xtkA5wF99w_6eHYjNRchAWUaG86VgymfZpiWOcvw4DV5hAqjhlbJ8MEaFfYPBB8PBIHx8MfPRe8cn_24-X_26tch-36PXYDQfuGs7oc_6Q7BbAvKzjrXQbMrMkr50B8P1eBDf_CxP4Lszf4D7UQPDUH-AhjdC6E</recordid><startdate>20150203</startdate><enddate>20150203</enddate><creator>Garay, Tamás</creator><creator>Kenessey, István</creator><creator>Molnár, Eszter</creator><creator>Juhász, Éva</creator><creator>Réti, Andrea</creator><creator>László, Viktória</creator><creator>Rózsás, Anita</creator><creator>Dobos, Judit</creator><creator>Döme, Balázs</creator><creator>Berger, Walter</creator><creator>Klepetko, Walter</creator><creator>Tóvári, József</creator><creator>Tímár, József</creator><creator>Hegedűs, Balázs</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150203</creationdate><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><author>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids</topic><topic>Activation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Bone disorder agents</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Cell Survival</topic><topic>Cisplatin</topic><topic>Colonization</topic><topic>Colorectal cancer</topic><topic>Cytotoxicity</topic><topic>Diphosphonates - therapeutic use</topic><topic>Enzymes</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>Health aspects</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Imidazoles - therapeutic use</topic><topic>Inhibition</topic><topic>Kinases</topic><topic>Liver</topic><topic>Male</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - genetics</topic><topic>Melanoma - pathology</topic><topic>Membrane Proteins - genetics</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Pharmacology</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Prenylation - drug effects</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN protein</topic><topic>Raf protein</topic><topic>Ribosomal protein S6</topic><topic>Sensitivity</topic><topic>Spleen</topic><topic>Surgery</topic><topic>Synergism</topic><topic>Thoracic surgery</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><topic>Zoledronic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garay, Tamás</creatorcontrib><creatorcontrib>Kenessey, István</creatorcontrib><creatorcontrib>Molnár, Eszter</creatorcontrib><creatorcontrib>Juhász, Éva</creatorcontrib><creatorcontrib>Réti, Andrea</creatorcontrib><creatorcontrib>László, Viktória</creatorcontrib><creatorcontrib>Rózsás, Anita</creatorcontrib><creatorcontrib>Dobos, Judit</creatorcontrib><creatorcontrib>Döme, Balázs</creatorcontrib><creatorcontrib>Berger, Walter</creatorcontrib><creatorcontrib>Klepetko, Walter</creatorcontrib><creatorcontrib>Tóvári, József</creatorcontrib><creatorcontrib>Tímár, József</creatorcontrib><creatorcontrib>Hegedűs, Balázs</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garay, Tamás</au><au>Kenessey, István</au><au>Molnár, Eszter</au><au>Juhász, Éva</au><au>Réti, Andrea</au><au>László, Viktória</au><au>Rózsás, Anita</au><au>Dobos, Judit</au><au>Döme, Balázs</au><au>Berger, Walter</au><au>Klepetko, Walter</au><au>Tóvári, József</au><au>Tímár, József</au><au>Hegedűs, Balázs</au><au>Smalley, Keiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-02-03</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>e0117021</spage><epage>e0117021</epage><pages>e0117021-e0117021</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25646931</pmid><doi>10.1371/journal.pone.0117021</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-02, Vol.10 (2), p.e0117021-e0117021
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1650969756
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acids
Activation
Animal models
Animals
Anticancer properties
Antitumor activity
Apoptosis
Apoptosis - drug effects
Biochemistry
Biotechnology
Bone disorder agents
Breast cancer
Cancer therapies
Cell cycle
Cell death
Cell growth
Cell Line, Tumor
Cell migration
Cell proliferation
Cell Survival
Cisplatin
Colonization
Colorectal cancer
Cytotoxicity
Diphosphonates - therapeutic use
Enzymes
GTP Phosphohydrolases - genetics
Health aspects
Hepatocytes
Humans
Imidazoles - therapeutic use
Inhibition
Kinases
Liver
Male
Medical research
Melanoma
Melanoma - drug therapy
Melanoma - genetics
Melanoma - pathology
Membrane Proteins - genetics
Metastasis
Mice
Mice, SCID
Mutation
Oncology
Pathology
Pharmacology
Poly(ADP-ribose) polymerase
Prenylation - drug effects
Prostate
Proteins
Proto-Oncogene Proteins B-raf - genetics
PTEN Phosphohydrolase - genetics
PTEN protein
Raf protein
Ribosomal protein S6
Sensitivity
Spleen
Surgery
Synergism
Thoracic surgery
Xenografts
Xenotransplantation
Zoledronic Acid
title Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prenylation%20inhibition-induced%20cell%20death%20in%20melanoma:%20reduced%20sensitivity%20in%20BRAF%20mutant/PTEN%20wild-type%20melanoma%20cells&rft.jtitle=PloS%20one&rft.au=Garay,%20Tam%C3%A1s&rft.date=2015-02-03&rft.volume=10&rft.issue=2&rft.spage=e0117021&rft.epage=e0117021&rft.pages=e0117021-e0117021&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0117021&rft_dat=%3Cgale_plos_%3EA425976427%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650969756&rft_id=info:pmid/25646931&rft_galeid=A425976427&rft_doaj_id=oai_doaj_org_article_8fb8cc26231e46cc9bbbaa2d4e3e7083&rfr_iscdi=true