Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanom...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-02, Vol.10 (2), p.e0117021-e0117021 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0117021 |
---|---|
container_issue | 2 |
container_start_page | e0117021 |
container_title | PloS one |
container_volume | 10 |
creator | Garay, Tamás Kenessey, István Molnár, Eszter Juhász, Éva Réti, Andrea László, Viktória Rózsás, Anita Dobos, Judit Döme, Balázs Berger, Walter Klepetko, Walter Tóvári, József Tímár, József Hegedűs, Balázs |
description | While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells. |
doi_str_mv | 10.1371/journal.pone.0117021 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1650969756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425976427</galeid><doaj_id>oai_doaj_org_article_8fb8cc26231e46cc9bbbaa2d4e3e7083</doaj_id><sourcerecordid>A425976427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4SBfbsZNwgVSmDSpNbBqDW8txTlpXjl1iZ6Nvj9NmVYt2gXxhy-f7f_sc-0TRa5ROEMnR6dL2nRF6srIGJilCeYrRk-gYlQQnDKfk6d76KHrh3DJNKSkYex4dYcoyVhJ0HN1fd2DWWnhlTazMQlVqWCbK1L2EOpagdVyD8IsQjVvQwthWfIo72MYdGBcUd8qvB-DLzfQibnsvjD-9vj3_Ht8rXSd-vYKddmPpXkbPGqEdvBrnk-jnxfnt2bfk8urr7Gx6mUhWYp8Utagx5A2juGGESklKoHWFGMYMEBMFKhtcUZrVOMvzkF9KcV6wAamkqCpyEr3d-q60dXysmeOI0bRkZU5ZIGZborZiyVedakW35lYovtmw3ZyLziupgRdNVUiJGSYIMiZlWVWVELjOgECeFiR4fR5P66sWagnGd0IfmB5GjFrwub3jGUGU5mUw-DAadPZ3D87zVrmhYMKA7Tf3xtkA5wF99w_6eHYjNRchAWUaG86VgymfZpiWOcvw4DV5hAqjhlbJ8MEaFfYPBB8PBIHx8MfPRe8cn_24-X_26tch-36PXYDQfuGs7oc_6Q7BbAvKzjrXQbMrMkr50B8P1eBDf_CxP4Lszf4D7UQPDUH-AhjdC6E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650969756</pqid></control><display><type>article</type><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs</creator><contributor>Smalley, Keiran</contributor><creatorcontrib>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs ; Smalley, Keiran</creatorcontrib><description>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0117021</identifier><identifier>PMID: 25646931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Activation ; Animal models ; Animals ; Anticancer properties ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Biochemistry ; Biotechnology ; Bone disorder agents ; Breast cancer ; Cancer therapies ; Cell cycle ; Cell death ; Cell growth ; Cell Line, Tumor ; Cell migration ; Cell proliferation ; Cell Survival ; Cisplatin ; Colonization ; Colorectal cancer ; Cytotoxicity ; Diphosphonates - therapeutic use ; Enzymes ; GTP Phosphohydrolases - genetics ; Health aspects ; Hepatocytes ; Humans ; Imidazoles - therapeutic use ; Inhibition ; Kinases ; Liver ; Male ; Medical research ; Melanoma ; Melanoma - drug therapy ; Melanoma - genetics ; Melanoma - pathology ; Membrane Proteins - genetics ; Metastasis ; Mice ; Mice, SCID ; Mutation ; Oncology ; Pathology ; Pharmacology ; Poly(ADP-ribose) polymerase ; Prenylation - drug effects ; Prostate ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; PTEN Phosphohydrolase - genetics ; PTEN protein ; Raf protein ; Ribosomal protein S6 ; Sensitivity ; Spleen ; Surgery ; Synergism ; Thoracic surgery ; Xenografts ; Xenotransplantation ; Zoledronic Acid</subject><ispartof>PloS one, 2015-02, Vol.10 (2), p.e0117021-e0117021</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Garay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Garay et al 2015 Garay et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</citedby><cites>FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25646931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Smalley, Keiran</contributor><creatorcontrib>Garay, Tamás</creatorcontrib><creatorcontrib>Kenessey, István</creatorcontrib><creatorcontrib>Molnár, Eszter</creatorcontrib><creatorcontrib>Juhász, Éva</creatorcontrib><creatorcontrib>Réti, Andrea</creatorcontrib><creatorcontrib>László, Viktória</creatorcontrib><creatorcontrib>Rózsás, Anita</creatorcontrib><creatorcontrib>Dobos, Judit</creatorcontrib><creatorcontrib>Döme, Balázs</creatorcontrib><creatorcontrib>Berger, Walter</creatorcontrib><creatorcontrib>Klepetko, Walter</creatorcontrib><creatorcontrib>Tóvári, József</creatorcontrib><creatorcontrib>Tímár, József</creatorcontrib><creatorcontrib>Hegedűs, Balázs</creatorcontrib><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</description><subject>Acids</subject><subject>Activation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Bone disorder agents</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Cell Survival</subject><subject>Cisplatin</subject><subject>Colonization</subject><subject>Colorectal cancer</subject><subject>Cytotoxicity</subject><subject>Diphosphonates - therapeutic use</subject><subject>Enzymes</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>Health aspects</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Imidazoles - therapeutic use</subject><subject>Inhibition</subject><subject>Kinases</subject><subject>Liver</subject><subject>Male</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - genetics</subject><subject>Melanoma - pathology</subject><subject>Membrane Proteins - genetics</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Pharmacology</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Prenylation - drug effects</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN protein</subject><subject>Raf protein</subject><subject>Ribosomal protein S6</subject><subject>Sensitivity</subject><subject>Spleen</subject><subject>Surgery</subject><subject>Synergism</subject><subject>Thoracic surgery</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><subject>Zoledronic Acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4SBfbsZNwgVSmDSpNbBqDW8txTlpXjl1iZ6Nvj9NmVYt2gXxhy-f7f_sc-0TRa5ROEMnR6dL2nRF6srIGJilCeYrRk-gYlQQnDKfk6d76KHrh3DJNKSkYex4dYcoyVhJ0HN1fd2DWWnhlTazMQlVqWCbK1L2EOpagdVyD8IsQjVvQwthWfIo72MYdGBcUd8qvB-DLzfQibnsvjD-9vj3_Ht8rXSd-vYKddmPpXkbPGqEdvBrnk-jnxfnt2bfk8urr7Gx6mUhWYp8Utagx5A2juGGESklKoHWFGMYMEBMFKhtcUZrVOMvzkF9KcV6wAamkqCpyEr3d-q60dXysmeOI0bRkZU5ZIGZborZiyVedakW35lYovtmw3ZyLziupgRdNVUiJGSYIMiZlWVWVELjOgECeFiR4fR5P66sWagnGd0IfmB5GjFrwub3jGUGU5mUw-DAadPZ3D87zVrmhYMKA7Tf3xtkA5wF99w_6eHYjNRchAWUaG86VgymfZpiWOcvw4DV5hAqjhlbJ8MEaFfYPBB8PBIHx8MfPRe8cn_24-X_26tch-36PXYDQfuGs7oc_6Q7BbAvKzjrXQbMrMkr50B8P1eBDf_CxP4Lszf4D7UQPDUH-AhjdC6E</recordid><startdate>20150203</startdate><enddate>20150203</enddate><creator>Garay, Tamás</creator><creator>Kenessey, István</creator><creator>Molnár, Eszter</creator><creator>Juhász, Éva</creator><creator>Réti, Andrea</creator><creator>László, Viktória</creator><creator>Rózsás, Anita</creator><creator>Dobos, Judit</creator><creator>Döme, Balázs</creator><creator>Berger, Walter</creator><creator>Klepetko, Walter</creator><creator>Tóvári, József</creator><creator>Tímár, József</creator><creator>Hegedűs, Balázs</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150203</creationdate><title>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</title><author>Garay, Tamás ; Kenessey, István ; Molnár, Eszter ; Juhász, Éva ; Réti, Andrea ; László, Viktória ; Rózsás, Anita ; Dobos, Judit ; Döme, Balázs ; Berger, Walter ; Klepetko, Walter ; Tóvári, József ; Tímár, József ; Hegedűs, Balázs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8dad2e7f652f635cc39e5db16226e16a819f2b554d24770530527865db1bcabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids</topic><topic>Activation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Bone disorder agents</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Cell Survival</topic><topic>Cisplatin</topic><topic>Colonization</topic><topic>Colorectal cancer</topic><topic>Cytotoxicity</topic><topic>Diphosphonates - therapeutic use</topic><topic>Enzymes</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>Health aspects</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Imidazoles - therapeutic use</topic><topic>Inhibition</topic><topic>Kinases</topic><topic>Liver</topic><topic>Male</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - genetics</topic><topic>Melanoma - pathology</topic><topic>Membrane Proteins - genetics</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Pharmacology</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Prenylation - drug effects</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN protein</topic><topic>Raf protein</topic><topic>Ribosomal protein S6</topic><topic>Sensitivity</topic><topic>Spleen</topic><topic>Surgery</topic><topic>Synergism</topic><topic>Thoracic surgery</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><topic>Zoledronic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garay, Tamás</creatorcontrib><creatorcontrib>Kenessey, István</creatorcontrib><creatorcontrib>Molnár, Eszter</creatorcontrib><creatorcontrib>Juhász, Éva</creatorcontrib><creatorcontrib>Réti, Andrea</creatorcontrib><creatorcontrib>László, Viktória</creatorcontrib><creatorcontrib>Rózsás, Anita</creatorcontrib><creatorcontrib>Dobos, Judit</creatorcontrib><creatorcontrib>Döme, Balázs</creatorcontrib><creatorcontrib>Berger, Walter</creatorcontrib><creatorcontrib>Klepetko, Walter</creatorcontrib><creatorcontrib>Tóvári, József</creatorcontrib><creatorcontrib>Tímár, József</creatorcontrib><creatorcontrib>Hegedűs, Balázs</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garay, Tamás</au><au>Kenessey, István</au><au>Molnár, Eszter</au><au>Juhász, Éva</au><au>Réti, Andrea</au><au>László, Viktória</au><au>Rózsás, Anita</au><au>Dobos, Judit</au><au>Döme, Balázs</au><au>Berger, Walter</au><au>Klepetko, Walter</au><au>Tóvári, József</au><au>Tímár, József</au><au>Hegedűs, Balázs</au><au>Smalley, Keiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-02-03</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>e0117021</spage><epage>e0117021</epage><pages>e0117021-e0117021</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25646931</pmid><doi>10.1371/journal.pone.0117021</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-02, Vol.10 (2), p.e0117021-e0117021 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1650969756 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acids Activation Animal models Animals Anticancer properties Antitumor activity Apoptosis Apoptosis - drug effects Biochemistry Biotechnology Bone disorder agents Breast cancer Cancer therapies Cell cycle Cell death Cell growth Cell Line, Tumor Cell migration Cell proliferation Cell Survival Cisplatin Colonization Colorectal cancer Cytotoxicity Diphosphonates - therapeutic use Enzymes GTP Phosphohydrolases - genetics Health aspects Hepatocytes Humans Imidazoles - therapeutic use Inhibition Kinases Liver Male Medical research Melanoma Melanoma - drug therapy Melanoma - genetics Melanoma - pathology Membrane Proteins - genetics Metastasis Mice Mice, SCID Mutation Oncology Pathology Pharmacology Poly(ADP-ribose) polymerase Prenylation - drug effects Prostate Proteins Proto-Oncogene Proteins B-raf - genetics PTEN Phosphohydrolase - genetics PTEN protein Raf protein Ribosomal protein S6 Sensitivity Spleen Surgery Synergism Thoracic surgery Xenografts Xenotransplantation Zoledronic Acid |
title | Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prenylation%20inhibition-induced%20cell%20death%20in%20melanoma:%20reduced%20sensitivity%20in%20BRAF%20mutant/PTEN%20wild-type%20melanoma%20cells&rft.jtitle=PloS%20one&rft.au=Garay,%20Tam%C3%A1s&rft.date=2015-02-03&rft.volume=10&rft.issue=2&rft.spage=e0117021&rft.epage=e0117021&rft.pages=e0117021-e0117021&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0117021&rft_dat=%3Cgale_plos_%3EA425976427%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650969756&rft_id=info:pmid/25646931&rft_galeid=A425976427&rft_doaj_id=oai_doaj_org_article_8fb8cc26231e46cc9bbbaa2d4e3e7083&rfr_iscdi=true |