Machine learning for biomedical literature triage

This paper presents a machine learning system for supporting the first task of the biological literature manual curation process, called triage. We compare the performance of various classification models, by experimenting with dataset sampling factors and a set of features, as well as three differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-12, Vol.9 (12), p.e115892-e115892
Hauptverfasser: Almeida, Hayda, Meurs, Marie-Jean, Kosseim, Leila, Butler, Greg, Tsang, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a machine learning system for supporting the first task of the biological literature manual curation process, called triage. We compare the performance of various classification models, by experimenting with dataset sampling factors and a set of features, as well as three different machine learning algorithms (Naive Bayes, Support Vector Machine and Logistic Model Trees). The results show that the most fitting model to handle the imbalanced datasets of the triage classification task is obtained by using domain relevant features, an under-sampling technique, and the Logistic Model Trees algorithm.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0115892