The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues

The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-12, Vol.9 (12), p.e115911-e115911
Hauptverfasser: Andersson, Sandra, Nilsson, Kenneth, Fagerberg, Linn, Hallström, Björn M, Sundström, Christer, Danielsson, Angelika, Edlund, Karolina, Uhlen, Mathias, Asplund, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e115911
container_issue 12
container_start_page e115911
container_title PloS one
container_volume 9
creator Andersson, Sandra
Nilsson, Kenneth
Fagerberg, Linn
Hallström, Björn M
Sundström, Christer
Danielsson, Angelika
Edlund, Karolina
Uhlen, Mathias
Asplund, Anna
description The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.
doi_str_mv 10.1371/journal.pone.0115911
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1640559840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793483</galeid><doaj_id>oai_doaj_org_article_fbdcd78b2714437e8c1631f4bd3c7fe2</doaj_id><sourcerecordid>A417793483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-f2cb04aeb31e62414094b77cbc985e0eb04a82dd37ee3b0fb580d42d7866cbb23</originalsourceid><addsrcrecordid>eNqNk2tr1EAUhoMotlb_gWhAEAV3nVsyyRdhqbeFQkFrwU_D3LI7NZuJM4l1_70nu2nZSEHJh2RmnvOenPfMSZKnGM0x5fjtle9DI-t56xs7RxhnJcb3kmNcUjLLCaL3D76PkkcxXiGU0SLPHyZHJMsY5jQ_Tr5frG3aBdlEHVzb-Y3TqWxM2gbf2d2qhmXUsrUx9VWqIFu6kSH46x0XrfaNkWGb1ttNu_bOpJ2LsbfxcfKgknW0T8b3SfLt44eL08-zs_NPy9PF2UzznHezimiFmLSKYpsThhkqmeJcK10WmUV2OCyIMZRbSxWqVFYgw4jhUIlWitCT5Plet619FKMrUeCcoSwrC4aAWO4J4-WVaIOD_98KL53YbfiwEjJ0TtdWVMpokFaEY8YgZaFxTnHFlKGaV3bI9mavFa9t26uJ2nt3udip9b0gjOa8BHz2b_xHtxbQvpwM8u_GYnq1sUbbBnpTT8KmJ41bi5X_JRjhnKEcBF6NAsH_hC50YuOitjV00fp-ZwtGOC8pA_TFX-jd5o3USoI_rqk85NWDqFjAHYIaWUGBmt9BwWMs3CG4M5WD_UnA60kAMJ393a1kH6NYfv3y_-z55ZR9ecCuray7dfR13znfxCnI9qAOPsZgq1uTMRLDgN24IYYBE-OAQdizwwbdBt1MFP0DBgEh7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640559840</pqid></control><display><type>article</type><title>The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Andersson, Sandra ; Nilsson, Kenneth ; Fagerberg, Linn ; Hallström, Björn M ; Sundström, Christer ; Danielsson, Angelika ; Edlund, Karolina ; Uhlen, Mathias ; Asplund, Anna</creator><creatorcontrib>Andersson, Sandra ; Nilsson, Kenneth ; Fagerberg, Linn ; Hallström, Björn M ; Sundström, Christer ; Danielsson, Angelika ; Edlund, Karolina ; Uhlen, Mathias ; Asplund, Anna</creatorcontrib><description>The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0115911</identifier><identifier>PMID: 25541736</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Appendix ; Appendix - metabolism ; Bioinformatics ; Biology ; Biology and life sciences ; Bone marrow ; Bone Marrow - metabolism ; comparative study ; controlled study ; erythrocyte ; Gene expression ; gene expression profiling ; Gene Expression Profiling - methods ; gene function ; gene identification ; gene location ; Gene sequencing ; gene targeting ; Genes ; genetic analysis ; genetic transcription ; Genome, Human ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; human ; human cell ; human tissue ; Humans ; immunohistochemistry ; Immunology ; Laboratories ; Leukemia ; Leukocytes (neutrophilic) ; Lists ; Localization ; lymph node ; Lymph nodes ; Lymph Nodes - metabolism ; Lymphatic system ; lymphoid cell ; Lymphoid tissue ; neutrophil ; Ontology ; Pathology ; Patologi ; Proteins ; Proteome - analysis ; Proteome - genetics ; Proteomics ; Proteomics - methods ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA sequence ; Rodents ; Science ; Spleen ; Spleen - metabolism ; Tissues ; Transcriptome</subject><ispartof>PloS one, 2014-12, Vol.9 (12), p.e115911-e115911</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Andersson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Andersson et al 2014 Andersson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-f2cb04aeb31e62414094b77cbc985e0eb04a82dd37ee3b0fb580d42d7866cbb23</citedby><cites>FETCH-LOGICAL-c767t-f2cb04aeb31e62414094b77cbc985e0eb04a82dd37ee3b0fb580d42d7866cbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277406/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277406/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25541736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159622$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243679$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersson, Sandra</creatorcontrib><creatorcontrib>Nilsson, Kenneth</creatorcontrib><creatorcontrib>Fagerberg, Linn</creatorcontrib><creatorcontrib>Hallström, Björn M</creatorcontrib><creatorcontrib>Sundström, Christer</creatorcontrib><creatorcontrib>Danielsson, Angelika</creatorcontrib><creatorcontrib>Edlund, Karolina</creatorcontrib><creatorcontrib>Uhlen, Mathias</creatorcontrib><creatorcontrib>Asplund, Anna</creatorcontrib><title>The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.</description><subject>Affinity</subject><subject>Appendix</subject><subject>Appendix - metabolism</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and life sciences</subject><subject>Bone marrow</subject><subject>Bone Marrow - metabolism</subject><subject>comparative study</subject><subject>controlled study</subject><subject>erythrocyte</subject><subject>Gene expression</subject><subject>gene expression profiling</subject><subject>Gene Expression Profiling - methods</subject><subject>gene function</subject><subject>gene identification</subject><subject>gene location</subject><subject>Gene sequencing</subject><subject>gene targeting</subject><subject>Genes</subject><subject>genetic analysis</subject><subject>genetic transcription</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>human</subject><subject>human cell</subject><subject>human tissue</subject><subject>Humans</subject><subject>immunohistochemistry</subject><subject>Immunology</subject><subject>Laboratories</subject><subject>Leukemia</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lists</subject><subject>Localization</subject><subject>lymph node</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - metabolism</subject><subject>Lymphatic system</subject><subject>lymphoid cell</subject><subject>Lymphoid tissue</subject><subject>neutrophil</subject><subject>Ontology</subject><subject>Pathology</subject><subject>Patologi</subject><subject>Proteins</subject><subject>Proteome - analysis</subject><subject>Proteome - genetics</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequence</subject><subject>Rodents</subject><subject>Science</subject><subject>Spleen</subject><subject>Spleen - metabolism</subject><subject>Tissues</subject><subject>Transcriptome</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr1EAUhoMotlb_gWhAEAV3nVsyyRdhqbeFQkFrwU_D3LI7NZuJM4l1_70nu2nZSEHJh2RmnvOenPfMSZKnGM0x5fjtle9DI-t56xs7RxhnJcb3kmNcUjLLCaL3D76PkkcxXiGU0SLPHyZHJMsY5jQ_Tr5frG3aBdlEHVzb-Y3TqWxM2gbf2d2qhmXUsrUx9VWqIFu6kSH46x0XrfaNkWGb1ttNu_bOpJ2LsbfxcfKgknW0T8b3SfLt44eL08-zs_NPy9PF2UzznHezimiFmLSKYpsThhkqmeJcK10WmUV2OCyIMZRbSxWqVFYgw4jhUIlWitCT5Plet619FKMrUeCcoSwrC4aAWO4J4-WVaIOD_98KL53YbfiwEjJ0TtdWVMpokFaEY8YgZaFxTnHFlKGaV3bI9mavFa9t26uJ2nt3udip9b0gjOa8BHz2b_xHtxbQvpwM8u_GYnq1sUbbBnpTT8KmJ41bi5X_JRjhnKEcBF6NAsH_hC50YuOitjV00fp-ZwtGOC8pA_TFX-jd5o3USoI_rqk85NWDqFjAHYIaWUGBmt9BwWMs3CG4M5WD_UnA60kAMJ393a1kH6NYfv3y_-z55ZR9ecCuray7dfR13znfxCnI9qAOPsZgq1uTMRLDgN24IYYBE-OAQdizwwbdBt1MFP0DBgEh7A</recordid><startdate>20141226</startdate><enddate>20141226</enddate><creator>Andersson, Sandra</creator><creator>Nilsson, Kenneth</creator><creator>Fagerberg, Linn</creator><creator>Hallström, Björn M</creator><creator>Sundström, Christer</creator><creator>Danielsson, Angelika</creator><creator>Edlund, Karolina</creator><creator>Uhlen, Mathias</creator><creator>Asplund, Anna</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>ACNBI</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20141226</creationdate><title>The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues</title><author>Andersson, Sandra ; Nilsson, Kenneth ; Fagerberg, Linn ; Hallström, Björn M ; Sundström, Christer ; Danielsson, Angelika ; Edlund, Karolina ; Uhlen, Mathias ; Asplund, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-f2cb04aeb31e62414094b77cbc985e0eb04a82dd37ee3b0fb580d42d7866cbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Affinity</topic><topic>Appendix</topic><topic>Appendix - metabolism</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and life sciences</topic><topic>Bone marrow</topic><topic>Bone Marrow - metabolism</topic><topic>comparative study</topic><topic>controlled study</topic><topic>erythrocyte</topic><topic>Gene expression</topic><topic>gene expression profiling</topic><topic>Gene Expression Profiling - methods</topic><topic>gene function</topic><topic>gene identification</topic><topic>gene location</topic><topic>Gene sequencing</topic><topic>gene targeting</topic><topic>Genes</topic><topic>genetic analysis</topic><topic>genetic transcription</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>human</topic><topic>human cell</topic><topic>human tissue</topic><topic>Humans</topic><topic>immunohistochemistry</topic><topic>Immunology</topic><topic>Laboratories</topic><topic>Leukemia</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lists</topic><topic>Localization</topic><topic>lymph node</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - metabolism</topic><topic>Lymphatic system</topic><topic>lymphoid cell</topic><topic>Lymphoid tissue</topic><topic>neutrophil</topic><topic>Ontology</topic><topic>Pathology</topic><topic>Patologi</topic><topic>Proteins</topic><topic>Proteome - analysis</topic><topic>Proteome - genetics</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequence</topic><topic>Rodents</topic><topic>Science</topic><topic>Spleen</topic><topic>Spleen - metabolism</topic><topic>Tissues</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Sandra</creatorcontrib><creatorcontrib>Nilsson, Kenneth</creatorcontrib><creatorcontrib>Fagerberg, Linn</creatorcontrib><creatorcontrib>Hallström, Björn M</creatorcontrib><creatorcontrib>Sundström, Christer</creatorcontrib><creatorcontrib>Danielsson, Angelika</creatorcontrib><creatorcontrib>Edlund, Karolina</creatorcontrib><creatorcontrib>Uhlen, Mathias</creatorcontrib><creatorcontrib>Asplund, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Sandra</au><au>Nilsson, Kenneth</au><au>Fagerberg, Linn</au><au>Hallström, Björn M</au><au>Sundström, Christer</au><au>Danielsson, Angelika</au><au>Edlund, Karolina</au><au>Uhlen, Mathias</au><au>Asplund, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-12-26</date><risdate>2014</risdate><volume>9</volume><issue>12</issue><spage>e115911</spage><epage>e115911</epage><pages>e115911-e115911</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25541736</pmid><doi>10.1371/journal.pone.0115911</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-12, Vol.9 (12), p.e115911-e115911
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1640559840
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Affinity
Appendix
Appendix - metabolism
Bioinformatics
Biology
Biology and life sciences
Bone marrow
Bone Marrow - metabolism
comparative study
controlled study
erythrocyte
Gene expression
gene expression profiling
Gene Expression Profiling - methods
gene function
gene identification
gene location
Gene sequencing
gene targeting
Genes
genetic analysis
genetic transcription
Genome, Human
Genomes
Genomics
High-Throughput Nucleotide Sequencing - methods
human
human cell
human tissue
Humans
immunohistochemistry
Immunology
Laboratories
Leukemia
Leukocytes (neutrophilic)
Lists
Localization
lymph node
Lymph nodes
Lymph Nodes - metabolism
Lymphatic system
lymphoid cell
Lymphoid tissue
neutrophil
Ontology
Pathology
Patologi
Proteins
Proteome - analysis
Proteome - genetics
Proteomics
Proteomics - methods
Research and Analysis Methods
Ribonucleic acid
RNA
RNA sequence
Rodents
Science
Spleen
Spleen - metabolism
Tissues
Transcriptome
title The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transcriptomic%20and%20proteomic%20landscapes%20of%20bone%20marrow%20and%20secondary%20lymphoid%20tissues&rft.jtitle=PloS%20one&rft.au=Andersson,%20Sandra&rft.date=2014-12-26&rft.volume=9&rft.issue=12&rft.spage=e115911&rft.epage=e115911&rft.pages=e115911-e115911&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0115911&rft_dat=%3Cgale_plos_%3EA417793483%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640559840&rft_id=info:pmid/25541736&rft_galeid=A417793483&rft_doaj_id=oai_doaj_org_article_fbdcd78b2714437e8c1631f4bd3c7fe2&rfr_iscdi=true