Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure

Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-12, Vol.9 (12), p.e115097-e115097
Hauptverfasser: Bondar, Galyna, Cadeiras, Martin, Wisniewski, Nicholas, Maque, Jetrina, Chittoor, Jay, Chang, Eleanor, Bakir, Maral, Starling, Charlotte, Shahzad, Khurram, Ping, Peipei, Reed, Elaine, Deng, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e115097
container_issue 12
container_start_page e115097
container_title PloS one
container_volume 9
creator Bondar, Galyna
Cadeiras, Martin
Wisniewski, Nicholas
Maque, Jetrina
Chittoor, Jay
Chang, Eleanor
Bakir, Maral
Starling, Charlotte
Shahzad, Khurram
Ping, Peipei
Reed, Elaine
Deng, Mario
description Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.
doi_str_mv 10.1371/journal.pone.0115097
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1637541444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418423894</galeid><doaj_id>oai_doaj_org_article_b26de5983b954caa910b68732fde7f2f</doaj_id><sourcerecordid>A418423894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e6da0271eb473773abb7279391d864cae609b09984d760ebe5316cfe03e829ce3</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQaG0F7vVyZJ1Uwihh0Ag0NOtkO3xWkG2XMneJI_VN6ycdUK25KIYbDP65h_NKcteErwmTJIPF34KvXHrwfewxoTkWMlH2SFRjK4Exezxvf-D7FmMFxjnrBDiaXZA85xIQvBh9ufEd4MJNvoe-QZdtt4BKp33NTJ9jQYIdmghGLcYO9_7fqocmIAqcA5toAcEV0OAGG0SaXxAsDVuMqPdaY4t3Oj49ErGLSDbN850nRl9uEbJMaUQZysa0jn0Y0SXdmyRqbemr6BGbYo2osZYNwV4nj1pjIvwYvkeZT8_f_px8nV1dv7l9OT4bFUJRccViNpgKgmUXDIpmSlLSaViitSF4JUBgVWJlSp4LQWGEnJGRNUAZlBQVQE7yl7vdAfno16qHTURTOaccM4Tcbojam8u9BBsZ8K19sbqG4MPG53ubVOxdElFDbkqWKnyFNwogktRSEabGmRDm6T1cYk2lR3UVapCKvqe6P5Jb1u98VvNqVAc0yTwbhEI_vcEcdSdjXOHTA9-urm3UpLyNBNH2Zt_0IezW6iNSQmklvkUt5pF9TEnBaesUDO1foBKTw2drdJoNjbZ9xze7zkkZoSrcWOmGPXp92__z57_2mff3mPTxLixjd5N8xTGfZDvwCr4GAM0d0UmWM-bdVsNPW-WXjYrub2636A7p9tVYn8Bgq8i2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637541444</pqid></control><display><type>article</type><title>Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bondar, Galyna ; Cadeiras, Martin ; Wisniewski, Nicholas ; Maque, Jetrina ; Chittoor, Jay ; Chang, Eleanor ; Bakir, Maral ; Starling, Charlotte ; Shahzad, Khurram ; Ping, Peipei ; Reed, Elaine ; Deng, Mario</creator><contributor>Sussman, Mark A.</contributor><creatorcontrib>Bondar, Galyna ; Cadeiras, Martin ; Wisniewski, Nicholas ; Maque, Jetrina ; Chittoor, Jay ; Chang, Eleanor ; Bakir, Maral ; Starling, Charlotte ; Shahzad, Khurram ; Ping, Peipei ; Reed, Elaine ; Deng, Mario ; Sussman, Mark A.</creatorcontrib><description>Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0115097</identifier><identifier>PMID: 25517110</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Apoptosis ; Biology and Life Sciences ; Biomarkers - metabolism ; Blood ; Care and treatment ; Case-Control Studies ; Diagnosis ; Gene expression ; Gene Expression Profiling - methods ; Gene Ontology ; Genes ; Genetic research ; Genomes ; Genomics ; Heart ; Heart diseases ; Heart failure ; Heart Failure - blood ; Heart Failure - surgery ; Heart surgery ; Humans ; Implantation ; Inflammation ; Inflammation - blood ; Inflammation - etiology ; Inflammation - genetics ; Inflammatory response ; Intensive care ; Learning algorithms ; Leukocytes (mononuclear) ; Leukocytes, Mononuclear - metabolism ; Machine learning ; Medicine and Health Sciences ; Middle Aged ; Ontology ; Patients ; Perioperative Period - adverse effects ; Peripheral blood mononuclear cells ; Research and Analysis Methods ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sepsis ; Surgery ; Transplants &amp; implants</subject><ispartof>PloS one, 2014-12, Vol.9 (12), p.e115097-e115097</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Bondar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Bondar et al 2014 Bondar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e6da0271eb473773abb7279391d864cae609b09984d760ebe5316cfe03e829ce3</citedby><cites>FETCH-LOGICAL-c692t-e6da0271eb473773abb7279391d864cae609b09984d760ebe5316cfe03e829ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269402/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269402/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25517110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sussman, Mark A.</contributor><creatorcontrib>Bondar, Galyna</creatorcontrib><creatorcontrib>Cadeiras, Martin</creatorcontrib><creatorcontrib>Wisniewski, Nicholas</creatorcontrib><creatorcontrib>Maque, Jetrina</creatorcontrib><creatorcontrib>Chittoor, Jay</creatorcontrib><creatorcontrib>Chang, Eleanor</creatorcontrib><creatorcontrib>Bakir, Maral</creatorcontrib><creatorcontrib>Starling, Charlotte</creatorcontrib><creatorcontrib>Shahzad, Khurram</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><creatorcontrib>Reed, Elaine</creatorcontrib><creatorcontrib>Deng, Mario</creatorcontrib><title>Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.</description><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers - metabolism</subject><subject>Blood</subject><subject>Care and treatment</subject><subject>Case-Control Studies</subject><subject>Diagnosis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Failure - blood</subject><subject>Heart Failure - surgery</subject><subject>Heart surgery</subject><subject>Humans</subject><subject>Implantation</subject><subject>Inflammation</subject><subject>Inflammation - blood</subject><subject>Inflammation - etiology</subject><subject>Inflammation - genetics</subject><subject>Inflammatory response</subject><subject>Intensive care</subject><subject>Learning algorithms</subject><subject>Leukocytes (mononuclear)</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Ontology</subject><subject>Patients</subject><subject>Perioperative Period - adverse effects</subject><subject>Peripheral blood mononuclear cells</subject><subject>Research and Analysis Methods</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sepsis</subject><subject>Surgery</subject><subject>Transplants &amp; implants</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQaG0F7vVyZJ1Uwihh0Ag0NOtkO3xWkG2XMneJI_VN6ycdUK25KIYbDP65h_NKcteErwmTJIPF34KvXHrwfewxoTkWMlH2SFRjK4Exezxvf-D7FmMFxjnrBDiaXZA85xIQvBh9ufEd4MJNvoe-QZdtt4BKp33NTJ9jQYIdmghGLcYO9_7fqocmIAqcA5toAcEV0OAGG0SaXxAsDVuMqPdaY4t3Oj49ErGLSDbN850nRl9uEbJMaUQZysa0jn0Y0SXdmyRqbemr6BGbYo2osZYNwV4nj1pjIvwYvkeZT8_f_px8nV1dv7l9OT4bFUJRccViNpgKgmUXDIpmSlLSaViitSF4JUBgVWJlSp4LQWGEnJGRNUAZlBQVQE7yl7vdAfno16qHTURTOaccM4Tcbojam8u9BBsZ8K19sbqG4MPG53ubVOxdElFDbkqWKnyFNwogktRSEabGmRDm6T1cYk2lR3UVapCKvqe6P5Jb1u98VvNqVAc0yTwbhEI_vcEcdSdjXOHTA9-urm3UpLyNBNH2Zt_0IezW6iNSQmklvkUt5pF9TEnBaesUDO1foBKTw2drdJoNjbZ9xze7zkkZoSrcWOmGPXp92__z57_2mff3mPTxLixjd5N8xTGfZDvwCr4GAM0d0UmWM-bdVsNPW-WXjYrub2636A7p9tVYn8Bgq8i2Q</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Bondar, Galyna</creator><creator>Cadeiras, Martin</creator><creator>Wisniewski, Nicholas</creator><creator>Maque, Jetrina</creator><creator>Chittoor, Jay</creator><creator>Chang, Eleanor</creator><creator>Bakir, Maral</creator><creator>Starling, Charlotte</creator><creator>Shahzad, Khurram</creator><creator>Ping, Peipei</creator><creator>Reed, Elaine</creator><creator>Deng, Mario</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141217</creationdate><title>Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure</title><author>Bondar, Galyna ; Cadeiras, Martin ; Wisniewski, Nicholas ; Maque, Jetrina ; Chittoor, Jay ; Chang, Eleanor ; Bakir, Maral ; Starling, Charlotte ; Shahzad, Khurram ; Ping, Peipei ; Reed, Elaine ; Deng, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e6da0271eb473773abb7279391d864cae609b09984d760ebe5316cfe03e829ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers - metabolism</topic><topic>Blood</topic><topic>Care and treatment</topic><topic>Case-Control Studies</topic><topic>Diagnosis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Failure - blood</topic><topic>Heart Failure - surgery</topic><topic>Heart surgery</topic><topic>Humans</topic><topic>Implantation</topic><topic>Inflammation</topic><topic>Inflammation - blood</topic><topic>Inflammation - etiology</topic><topic>Inflammation - genetics</topic><topic>Inflammatory response</topic><topic>Intensive care</topic><topic>Learning algorithms</topic><topic>Leukocytes (mononuclear)</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Ontology</topic><topic>Patients</topic><topic>Perioperative Period - adverse effects</topic><topic>Peripheral blood mononuclear cells</topic><topic>Research and Analysis Methods</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sepsis</topic><topic>Surgery</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondar, Galyna</creatorcontrib><creatorcontrib>Cadeiras, Martin</creatorcontrib><creatorcontrib>Wisniewski, Nicholas</creatorcontrib><creatorcontrib>Maque, Jetrina</creatorcontrib><creatorcontrib>Chittoor, Jay</creatorcontrib><creatorcontrib>Chang, Eleanor</creatorcontrib><creatorcontrib>Bakir, Maral</creatorcontrib><creatorcontrib>Starling, Charlotte</creatorcontrib><creatorcontrib>Shahzad, Khurram</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><creatorcontrib>Reed, Elaine</creatorcontrib><creatorcontrib>Deng, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondar, Galyna</au><au>Cadeiras, Martin</au><au>Wisniewski, Nicholas</au><au>Maque, Jetrina</au><au>Chittoor, Jay</au><au>Chang, Eleanor</au><au>Bakir, Maral</au><au>Starling, Charlotte</au><au>Shahzad, Khurram</au><au>Ping, Peipei</au><au>Reed, Elaine</au><au>Deng, Mario</au><au>Sussman, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>9</volume><issue>12</issue><spage>e115097</spage><epage>e115097</epage><pages>e115097-e115097</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25517110</pmid><doi>10.1371/journal.pone.0115097</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-12, Vol.9 (12), p.e115097-e115097
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1637541444
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Apoptosis
Biology and Life Sciences
Biomarkers - metabolism
Blood
Care and treatment
Case-Control Studies
Diagnosis
Gene expression
Gene Expression Profiling - methods
Gene Ontology
Genes
Genetic research
Genomes
Genomics
Heart
Heart diseases
Heart failure
Heart Failure - blood
Heart Failure - surgery
Heart surgery
Humans
Implantation
Inflammation
Inflammation - blood
Inflammation - etiology
Inflammation - genetics
Inflammatory response
Intensive care
Learning algorithms
Leukocytes (mononuclear)
Leukocytes, Mononuclear - metabolism
Machine learning
Medicine and Health Sciences
Middle Aged
Ontology
Patients
Perioperative Period - adverse effects
Peripheral blood mononuclear cells
Research and Analysis Methods
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sepsis
Surgery
Transplants & implants
title Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20whole%20blood%20and%20peripheral%20blood%20mononuclear%20cell%20gene%20expression%20for%20evaluation%20of%20the%20perioperative%20inflammatory%20response%20in%20patients%20with%20advanced%20heart%20failure&rft.jtitle=PloS%20one&rft.au=Bondar,%20Galyna&rft.date=2014-12-17&rft.volume=9&rft.issue=12&rft.spage=e115097&rft.epage=e115097&rft.pages=e115097-e115097&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0115097&rft_dat=%3Cgale_plos_%3EA418423894%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637541444&rft_id=info:pmid/25517110&rft_galeid=A418423894&rft_doaj_id=oai_doaj_org_article_b26de5983b954caa910b68732fde7f2f&rfr_iscdi=true