Coupled protein diffusion and folding in the cell
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-12, Vol.9 (12), p.e113040-e113040 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e113040 |
---|---|
container_issue | 12 |
container_start_page | e113040 |
container_title | PloS one |
container_volume | 9 |
creator | Guo, Minghao Gelman, Hannah Gruebele, Martin |
description | When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. |
doi_str_mv | 10.1371/journal.pone.0113040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1629337459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ffb73f17bee4c29bb32f84fcd5fde66</doaj_id><sourcerecordid>1629964495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-f6e6e513a4d3f5e5f26a08aa598049ba52f9c05b234f2e05fd7b19eb43a720933</originalsourceid><addsrcrecordid>eNptUk1rFDEYDmKxtfoPRAe8eNk13zO5CLK0Wij0Us8hmbzZZskmYzJT8N87605LKz0l5Pl4P_Ig9IHgNWEt-brLU0kmroecYI0JYZjjV-iMKEZXkmL2-sn9FL2tdYexYJ2Ub9ApFZxJgekZIps8DRFcM5Q8QkiNC95PNeTUmOQan6MLadvMwHgHTQ8xvkMn3sQK75fzHP26vLjd_Fxd3_y42ny_XvWCynHlJUgQhBnumBcgPJUGd8YI1WGurBHUqx4LSxn3FLDwrrVEgeXMtBQrxs7Rp6PvEHPVy7RVE0lnsOVCzYyrI8Nls9NDCXtT_uhsgv73kMtWmzKGPoIW3tuWedJaAN5TZS2jvuO-d3NhkHL2-rZUm-weXA9pLCY-M32OpHCnt_lec8pVx8ls8GUxKPn3BHXU-1AP-zIJ8nTsW0nOlZipn_-jvjwdP7L6kmst4B-bIVgfEvCg0ocE6CUBs-zj00EeRQ9fzv4CrMiufQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629337459</pqid></control><display><type>article</type><title>Coupled protein diffusion and folding in the cell</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Minghao ; Gelman, Hannah ; Gruebele, Martin</creator><contributor>Levy, Yaakov Koby</contributor><creatorcontrib>Guo, Minghao ; Gelman, Hannah ; Gruebele, Martin ; Levy, Yaakov Koby</creatorcontrib><description>When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113040</identifier><identifier>PMID: 25436502</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Biophysics ; Cell Line, Tumor ; Chaperones ; Clustering ; Cytosol ; Cytosol - enzymology ; Diffusion ; Diffusion coefficient ; Diffusion equations ; Diffusion rate ; Enzyme Stability ; Fluorescence ; Green fluorescent protein ; HSP70 Heat-Shock Proteins - metabolism ; Humans ; Hydrophobicity ; Lasers ; Mathematical models ; Methods ; Models, Molecular ; Mutation ; Phosphoglycerate kinase ; Phosphoglycerate Kinase - chemistry ; Phosphoglycerate Kinase - genetics ; Phosphoglycerate Kinase - metabolism ; Photobleaching ; Physics ; Protein Conformation ; Protein expression ; Protein Folding ; Punctum minutissimum ; Recovery (Medical) ; Research and Analysis Methods ; Scaling ; Temperature ; Temperature dependence</subject><ispartof>PloS one, 2014-12, Vol.9 (12), p.e113040-e113040</ispartof><rights>2014 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Guo et al 2014 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-f6e6e513a4d3f5e5f26a08aa598049ba52f9c05b234f2e05fd7b19eb43a720933</citedby><cites>FETCH-LOGICAL-c526t-f6e6e513a4d3f5e5f26a08aa598049ba52f9c05b234f2e05fd7b19eb43a720933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249841/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249841/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25436502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levy, Yaakov Koby</contributor><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Gelman, Hannah</creatorcontrib><creatorcontrib>Gruebele, Martin</creatorcontrib><title>Coupled protein diffusion and folding in the cell</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Cell Line, Tumor</subject><subject>Chaperones</subject><subject>Clustering</subject><subject>Cytosol</subject><subject>Cytosol - enzymology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion equations</subject><subject>Diffusion rate</subject><subject>Enzyme Stability</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Phosphoglycerate kinase</subject><subject>Phosphoglycerate Kinase - chemistry</subject><subject>Phosphoglycerate Kinase - genetics</subject><subject>Phosphoglycerate Kinase - metabolism</subject><subject>Photobleaching</subject><subject>Physics</subject><subject>Protein Conformation</subject><subject>Protein expression</subject><subject>Protein Folding</subject><subject>Punctum minutissimum</subject><subject>Recovery (Medical)</subject><subject>Research and Analysis Methods</subject><subject>Scaling</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1rFDEYDmKxtfoPRAe8eNk13zO5CLK0Wij0Us8hmbzZZskmYzJT8N87605LKz0l5Pl4P_Ig9IHgNWEt-brLU0kmroecYI0JYZjjV-iMKEZXkmL2-sn9FL2tdYexYJ2Ub9ApFZxJgekZIps8DRFcM5Q8QkiNC95PNeTUmOQan6MLadvMwHgHTQ8xvkMn3sQK75fzHP26vLjd_Fxd3_y42ny_XvWCynHlJUgQhBnumBcgPJUGd8YI1WGurBHUqx4LSxn3FLDwrrVEgeXMtBQrxs7Rp6PvEHPVy7RVE0lnsOVCzYyrI8Nls9NDCXtT_uhsgv73kMtWmzKGPoIW3tuWedJaAN5TZS2jvuO-d3NhkHL2-rZUm-weXA9pLCY-M32OpHCnt_lec8pVx8ls8GUxKPn3BHXU-1AP-zIJ8nTsW0nOlZipn_-jvjwdP7L6kmst4B-bIVgfEvCg0ocE6CUBs-zj00EeRQ9fzv4CrMiufQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Guo, Minghao</creator><creator>Gelman, Hannah</creator><creator>Gruebele, Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141201</creationdate><title>Coupled protein diffusion and folding in the cell</title><author>Guo, Minghao ; Gelman, Hannah ; Gruebele, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-f6e6e513a4d3f5e5f26a08aa598049ba52f9c05b234f2e05fd7b19eb43a720933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Cell Line, Tumor</topic><topic>Chaperones</topic><topic>Clustering</topic><topic>Cytosol</topic><topic>Cytosol - enzymology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion equations</topic><topic>Diffusion rate</topic><topic>Enzyme Stability</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Phosphoglycerate kinase</topic><topic>Phosphoglycerate Kinase - chemistry</topic><topic>Phosphoglycerate Kinase - genetics</topic><topic>Phosphoglycerate Kinase - metabolism</topic><topic>Photobleaching</topic><topic>Physics</topic><topic>Protein Conformation</topic><topic>Protein expression</topic><topic>Protein Folding</topic><topic>Punctum minutissimum</topic><topic>Recovery (Medical)</topic><topic>Research and Analysis Methods</topic><topic>Scaling</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Gelman, Hannah</creatorcontrib><creatorcontrib>Gruebele, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Minghao</au><au>Gelman, Hannah</au><au>Gruebele, Martin</au><au>Levy, Yaakov Koby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled protein diffusion and folding in the cell</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>9</volume><issue>12</issue><spage>e113040</spage><epage>e113040</epage><pages>e113040-e113040</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25436502</pmid><doi>10.1371/journal.pone.0113040</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-12, Vol.9 (12), p.e113040-e113040 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1629337459 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biology and Life Sciences Biophysics Cell Line, Tumor Chaperones Clustering Cytosol Cytosol - enzymology Diffusion Diffusion coefficient Diffusion equations Diffusion rate Enzyme Stability Fluorescence Green fluorescent protein HSP70 Heat-Shock Proteins - metabolism Humans Hydrophobicity Lasers Mathematical models Methods Models, Molecular Mutation Phosphoglycerate kinase Phosphoglycerate Kinase - chemistry Phosphoglycerate Kinase - genetics Phosphoglycerate Kinase - metabolism Photobleaching Physics Protein Conformation Protein expression Protein Folding Punctum minutissimum Recovery (Medical) Research and Analysis Methods Scaling Temperature Temperature dependence |
title | Coupled protein diffusion and folding in the cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20protein%20diffusion%20and%20folding%20in%20the%20cell&rft.jtitle=PloS%20one&rft.au=Guo,%20Minghao&rft.date=2014-12-01&rft.volume=9&rft.issue=12&rft.spage=e113040&rft.epage=e113040&rft.pages=e113040-e113040&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113040&rft_dat=%3Cproquest_plos_%3E1629964495%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629337459&rft_id=info:pmid/25436502&rft_doaj_id=oai_doaj_org_article_5ffb73f17bee4c29bb32f84fcd5fde66&rfr_iscdi=true |