Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons
A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKA...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-11, Vol.9 (11), p.e113428-e113428 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e113428 |
---|---|
container_issue | 11 |
container_start_page | e113428 |
container_title | PloS one |
container_volume | 9 |
creator | Abashidze, Anastasia Gold, Veronica Anavi, Yaron Greenspan, Hayit Weil, Miguel |
description | A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover, we demonstrate that IKAP colocalizes with activated JNK (pJNK), dynein, and β-tubulin at the axon terminals of dorsal root ganglia (DRG) neurons, and may be involved in transport of specific target derived signals required for transcription of JNK and NGF responsive genes in the nucleus. These results suggest the novel role of IKAP in neuronal transport and specific signaling mediated transcription, and provide, for the first time, the basis for a molecular mechanism behind the FD phenotype. |
doi_str_mv | 10.1371/journal.pone.0113428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1626170439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e6c3c7c6b5a84edea121991701cfe64c</doaj_id><sourcerecordid>3501855521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e550b3df552bdeb84818a84f0dcaefb60ff835cb5973310d3909fbadcad0b2e63</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIloV_gCASl1528UfsJBekqqJlabVUAs6WY49Tr7J2sJOV-Pd1dtOqRZxsz7x582b8suw9RitMS_x568fgZLfqvYMVwpgWpHqRneKakiUniL58cj_J3sS4RYjRivPX2QlhBaoxJ6fZsHZ73-1hB27IvcnX1-e3uXV5D8H2dxBklw8ytDCkoIOwl4P1LpdOT6DYg7LGqvz75voQ21xd5tG2SZZ17YTQsIfO99PrdvMzdzAG7-Lb7JWRXYR387nIfl9-_XXxbXnz42p9cX6zVIzwYQmMoYZqwxhpNDRVUeFKVoVBWkkwDUfGVJSphtUlpRhpWqPaNDJlNWoIcLrIPh55-85HMS8sijQ4xyUqaJ0Q6yNCe7kVfbA7Gf4KL604BHxohQyDVR0I4IqqUvGGJQ2gQWKC6zrxYGWAFypxfZm7jc0OtEobTet7Rvo84-ydaP1eFISW6T8SwdlMEPyfEeIgdjYq6DrpwI8H3SUqMUn4RfbpH-j_pyuOKBV8jAHMoxiMxGSihyoxmUjMJkplH54O8lj04Bp6D6uoxsc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626170439</pqid></control><display><type>article</type><title>Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons</title><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>PLoS_OA刊</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Abashidze, Anastasia ; Gold, Veronica ; Anavi, Yaron ; Greenspan, Hayit ; Weil, Miguel</creator><contributor>Yang, Yanmin</contributor><creatorcontrib>Abashidze, Anastasia ; Gold, Veronica ; Anavi, Yaron ; Greenspan, Hayit ; Weil, Miguel ; Yang, Yanmin</creatorcontrib><description>A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover, we demonstrate that IKAP colocalizes with activated JNK (pJNK), dynein, and β-tubulin at the axon terminals of dorsal root ganglia (DRG) neurons, and may be involved in transport of specific target derived signals required for transcription of JNK and NGF responsive genes in the nucleus. These results suggest the novel role of IKAP in neuronal transport and specific signaling mediated transcription, and provide, for the first time, the basis for a molecular mechanism behind the FD phenotype.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113428</identifier><identifier>PMID: 25409162</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Axon guidance ; Axonal transport ; Axons - metabolism ; Biology and Life Sciences ; Carrier Proteins - antagonists & inhibitors ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell adhesion & migration ; Cell Movement ; Cells, Cultured ; Chick Embryo ; Chickens ; Dorsal root ganglia ; Dynein ; Dyneins - metabolism ; Dysautonomia ; Dysautonomia, Familial - genetics ; Dysautonomia, Familial - pathology ; Ganglia ; Ganglia, Spinal - cytology ; Gene expression ; Genotype & phenotype ; Immunology ; Innervation ; JNK Mitogen-Activated Protein Kinases - metabolism ; JNK protein ; Kinases ; Laboratories ; Life sciences ; Microscopy, Fluorescence ; Mutation ; Nerve growth factor ; Nerve Growth Factor - metabolism ; Nervous system ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neuropathology ; Neurosciences ; Peripheral nervous system ; Peripheral Nervous System - growth & development ; Peripheral Nervous System - pathology ; Precision medicine ; Presynapse ; Proteins ; RNA Interference ; RNA, Small Interfering - metabolism ; Rodents ; Signal Transduction ; Signaling ; Splicing ; Stem cells ; Transcription ; Transfer RNA ; Transport buildings, stations and terminals ; Tubulin ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e113428-e113428</ispartof><rights>2014 Abashidze et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Abashidze et al 2014 Abashidze et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e550b3df552bdeb84818a84f0dcaefb60ff835cb5973310d3909fbadcad0b2e63</citedby><cites>FETCH-LOGICAL-c526t-e550b3df552bdeb84818a84f0dcaefb60ff835cb5973310d3909fbadcad0b2e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237409/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237409/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25409162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Yanmin</contributor><creatorcontrib>Abashidze, Anastasia</creatorcontrib><creatorcontrib>Gold, Veronica</creatorcontrib><creatorcontrib>Anavi, Yaron</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><creatorcontrib>Weil, Miguel</creatorcontrib><title>Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover, we demonstrate that IKAP colocalizes with activated JNK (pJNK), dynein, and β-tubulin at the axon terminals of dorsal root ganglia (DRG) neurons, and may be involved in transport of specific target derived signals required for transcription of JNK and NGF responsive genes in the nucleus. These results suggest the novel role of IKAP in neuronal transport and specific signaling mediated transcription, and provide, for the first time, the basis for a molecular mechanism behind the FD phenotype.</description><subject>Animals</subject><subject>Axon guidance</subject><subject>Axonal transport</subject><subject>Axons - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Carrier Proteins - antagonists & inhibitors</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Chick Embryo</subject><subject>Chickens</subject><subject>Dorsal root ganglia</subject><subject>Dynein</subject><subject>Dyneins - metabolism</subject><subject>Dysautonomia</subject><subject>Dysautonomia, Familial - genetics</subject><subject>Dysautonomia, Familial - pathology</subject><subject>Ganglia</subject><subject>Ganglia, Spinal - cytology</subject><subject>Gene expression</subject><subject>Genotype & phenotype</subject><subject>Immunology</subject><subject>Innervation</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Nerve growth factor</subject><subject>Nerve Growth Factor - metabolism</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neuropathology</subject><subject>Neurosciences</subject><subject>Peripheral nervous system</subject><subject>Peripheral Nervous System - growth & development</subject><subject>Peripheral Nervous System - pathology</subject><subject>Precision medicine</subject><subject>Presynapse</subject><subject>Proteins</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Splicing</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transfer RNA</subject><subject>Transport buildings, stations and terminals</subject><subject>Tubulin</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIloV_gCASl1528UfsJBekqqJlabVUAs6WY49Tr7J2sJOV-Pd1dtOqRZxsz7x582b8suw9RitMS_x568fgZLfqvYMVwpgWpHqRneKakiUniL58cj_J3sS4RYjRivPX2QlhBaoxJ6fZsHZ73-1hB27IvcnX1-e3uXV5D8H2dxBklw8ytDCkoIOwl4P1LpdOT6DYg7LGqvz75voQ21xd5tG2SZZ17YTQsIfO99PrdvMzdzAG7-Lb7JWRXYR387nIfl9-_XXxbXnz42p9cX6zVIzwYQmMoYZqwxhpNDRVUeFKVoVBWkkwDUfGVJSphtUlpRhpWqPaNDJlNWoIcLrIPh55-85HMS8sijQ4xyUqaJ0Q6yNCe7kVfbA7Gf4KL604BHxohQyDVR0I4IqqUvGGJQ2gQWKC6zrxYGWAFypxfZm7jc0OtEobTet7Rvo84-ydaP1eFISW6T8SwdlMEPyfEeIgdjYq6DrpwI8H3SUqMUn4RfbpH-j_pyuOKBV8jAHMoxiMxGSihyoxmUjMJkplH54O8lj04Bp6D6uoxsc</recordid><startdate>20141119</startdate><enddate>20141119</enddate><creator>Abashidze, Anastasia</creator><creator>Gold, Veronica</creator><creator>Anavi, Yaron</creator><creator>Greenspan, Hayit</creator><creator>Weil, Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141119</creationdate><title>Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons</title><author>Abashidze, Anastasia ; Gold, Veronica ; Anavi, Yaron ; Greenspan, Hayit ; Weil, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e550b3df552bdeb84818a84f0dcaefb60ff835cb5973310d3909fbadcad0b2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axon guidance</topic><topic>Axonal transport</topic><topic>Axons - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Carrier Proteins - antagonists & inhibitors</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Chick Embryo</topic><topic>Chickens</topic><topic>Dorsal root ganglia</topic><topic>Dynein</topic><topic>Dyneins - metabolism</topic><topic>Dysautonomia</topic><topic>Dysautonomia, Familial - genetics</topic><topic>Dysautonomia, Familial - pathology</topic><topic>Ganglia</topic><topic>Ganglia, Spinal - cytology</topic><topic>Gene expression</topic><topic>Genotype & phenotype</topic><topic>Immunology</topic><topic>Innervation</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Nerve growth factor</topic><topic>Nerve Growth Factor - metabolism</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neuropathology</topic><topic>Neurosciences</topic><topic>Peripheral nervous system</topic><topic>Peripheral Nervous System - growth & development</topic><topic>Peripheral Nervous System - pathology</topic><topic>Precision medicine</topic><topic>Presynapse</topic><topic>Proteins</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Splicing</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transfer RNA</topic><topic>Transport buildings, stations and terminals</topic><topic>Tubulin</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abashidze, Anastasia</creatorcontrib><creatorcontrib>Gold, Veronica</creatorcontrib><creatorcontrib>Anavi, Yaron</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><creatorcontrib>Weil, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abashidze, Anastasia</au><au>Gold, Veronica</au><au>Anavi, Yaron</au><au>Greenspan, Hayit</au><au>Weil, Miguel</au><au>Yang, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-19</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e113428</spage><epage>e113428</epage><pages>e113428-e113428</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover, we demonstrate that IKAP colocalizes with activated JNK (pJNK), dynein, and β-tubulin at the axon terminals of dorsal root ganglia (DRG) neurons, and may be involved in transport of specific target derived signals required for transcription of JNK and NGF responsive genes in the nucleus. These results suggest the novel role of IKAP in neuronal transport and specific signaling mediated transcription, and provide, for the first time, the basis for a molecular mechanism behind the FD phenotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25409162</pmid><doi>10.1371/journal.pone.0113428</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-11, Vol.9 (11), p.e113428-e113428 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1626170439 |
source | MEDLINE; NCBI_PubMed Central(免费); PLoS_OA刊; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Animals Axon guidance Axonal transport Axons - metabolism Biology and Life Sciences Carrier Proteins - antagonists & inhibitors Carrier Proteins - genetics Carrier Proteins - metabolism Cell adhesion & migration Cell Movement Cells, Cultured Chick Embryo Chickens Dorsal root ganglia Dynein Dyneins - metabolism Dysautonomia Dysautonomia, Familial - genetics Dysautonomia, Familial - pathology Ganglia Ganglia, Spinal - cytology Gene expression Genotype & phenotype Immunology Innervation JNK Mitogen-Activated Protein Kinases - metabolism JNK protein Kinases Laboratories Life sciences Microscopy, Fluorescence Mutation Nerve growth factor Nerve Growth Factor - metabolism Nervous system Neurogenesis Neurons Neurons - cytology Neurons - metabolism Neuropathology Neurosciences Peripheral nervous system Peripheral Nervous System - growth & development Peripheral Nervous System - pathology Precision medicine Presynapse Proteins RNA Interference RNA, Small Interfering - metabolism Rodents Signal Transduction Signaling Splicing Stem cells Transcription Transfer RNA Transport buildings, stations and terminals Tubulin Tubulin - chemistry Tubulin - metabolism |
title | Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20IKAP%20in%20peripheral%20target%20innervation%20and%20in%20specific%20JNK%20and%20NGF%20signaling%20in%20developing%20PNS%20neurons&rft.jtitle=PloS%20one&rft.au=Abashidze,%20Anastasia&rft.date=2014-11-19&rft.volume=9&rft.issue=11&rft.spage=e113428&rft.epage=e113428&rft.pages=e113428-e113428&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113428&rft_dat=%3Cproquest_plos_%3E3501855521%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626170439&rft_id=info:pmid/25409162&rft_doaj_id=oai_doaj_org_article_e6c3c7c6b5a84edea121991701cfe64c&rfr_iscdi=true |