Genetic control of startle behavior in medaka fish

Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-11, Vol.9 (11), p.e112527-e112527
Hauptverfasser: Tsuboko, Satomi, Kimura, Tetsuaki, Shinya, Minori, Suehiro, Yuji, Okuyama, Teruhiro, Shimada, Atsuko, Takeda, Hiroyuki, Naruse, Kiyoshi, Kubo, Takeo, Takeuchi, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e112527
container_issue 11
container_start_page e112527
container_title PloS one
container_volume 9
creator Tsuboko, Satomi
Kimura, Tetsuaki
Shinya, Minori
Suehiro, Yuji
Okuyama, Teruhiro
Shimada, Atsuko
Takeda, Hiroyuki
Naruse, Kiyoshi
Kubo, Takeo
Takeuchi, Hideaki
description Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.
doi_str_mv 10.1371/journal.pone.0112527
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1624949211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba2405425c184617b7338e9f1cf578da</doaj_id><sourcerecordid>3495184331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-ca430e160890a555f53c4635c43da160407cadcda30c0ebbc1bcfdcd7985f2173</originalsourceid><addsrcrecordid>eNptUl1vFCEUJUZj29V_YHQSX3zZlcuF-XgxaRptmzTxRZ8Jcwe6rOywwmwT_71sd9q0xgcCXM45nAOXsXfAV4ANfN7EfRpNWO3iaFccQCjRvGCn0KFY1oLjyyfrE3aW84ZzhW1dv2YnQmGHZZwycWlHO3mqKI5TiqGKrsqTSVOwVW_X5s7HVPmx2trB_DKV83n9hr1yJmT7dp4X7Oe3rz8urpY33y-vL85vlqQ6MS3JSOQWat523CilnEKSNSqSOJhSlrwhM9BgkBO3fU_Qkyv7pmuVE9Dggn046u5CzHqOmzXUQnayEwAFcX1EDNFs9C75rUl_dDRe3xdiutUliadgdW-E5EoKRdDKGpq-QWxt54CcatpiYsG-zLft-xKWbHkOE56JPj8Z_VrfxjstBQLHg5lPs0CKv_c2T3rrM9kQzGjj_t63Qim4VAX68R_o_9PJI4pSzDlZ92gGuD60wANLH1pAzy1QaO-fBnkkPfw5_gWzmK3p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624949211</pqid></control><display><type>article</type><title>Genetic control of startle behavior in medaka fish</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsuboko, Satomi ; Kimura, Tetsuaki ; Shinya, Minori ; Suehiro, Yuji ; Okuyama, Teruhiro ; Shimada, Atsuko ; Takeda, Hiroyuki ; Naruse, Kiyoshi ; Kubo, Takeo ; Takeuchi, Hideaki</creator><contributor>Burgess, Harold A.</contributor><creatorcontrib>Tsuboko, Satomi ; Kimura, Tetsuaki ; Shinya, Minori ; Suehiro, Yuji ; Okuyama, Teruhiro ; Shimada, Atsuko ; Takeda, Hiroyuki ; Naruse, Kiyoshi ; Kubo, Takeo ; Takeuchi, Hideaki ; Burgess, Harold A.</creatorcontrib><description>Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0112527</identifier><identifier>PMID: 25393539</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptiveness ; Animal behavior ; Animals ; Attenuation ; Behavior, Animal ; Biology and Life Sciences ; Crosses, Genetic ; Gene mapping ; Genetic control ; Genome ; Genomics ; Genotype ; Genotypes ; Inbreeding ; Linkage analysis ; Local population ; Movement ; Odds Ratio ; Oryzias - genetics ; Oryzias latipes ; Photic Stimulation ; Polymorphism, Genetic ; Population genetics ; Populations ; Progeny ; Properties (attributes) ; Quantitative Trait Loci ; Reflex, Startle - genetics ; Rodents ; Science ; Sensitivity ; Species extinction ; Startle response ; Strains (organisms) ; Vertebrates ; Visual stimuli</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e112527-e112527</ispartof><rights>2014 Tsuboko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Tsuboko et al 2014 Tsuboko et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-ca430e160890a555f53c4635c43da160407cadcda30c0ebbc1bcfdcd7985f2173</citedby><cites>FETCH-LOGICAL-c592t-ca430e160890a555f53c4635c43da160407cadcda30c0ebbc1bcfdcd7985f2173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25393539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burgess, Harold A.</contributor><creatorcontrib>Tsuboko, Satomi</creatorcontrib><creatorcontrib>Kimura, Tetsuaki</creatorcontrib><creatorcontrib>Shinya, Minori</creatorcontrib><creatorcontrib>Suehiro, Yuji</creatorcontrib><creatorcontrib>Okuyama, Teruhiro</creatorcontrib><creatorcontrib>Shimada, Atsuko</creatorcontrib><creatorcontrib>Takeda, Hiroyuki</creatorcontrib><creatorcontrib>Naruse, Kiyoshi</creatorcontrib><creatorcontrib>Kubo, Takeo</creatorcontrib><creatorcontrib>Takeuchi, Hideaki</creatorcontrib><title>Genetic control of startle behavior in medaka fish</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.</description><subject>Adaptiveness</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Attenuation</subject><subject>Behavior, Animal</subject><subject>Biology and Life Sciences</subject><subject>Crosses, Genetic</subject><subject>Gene mapping</subject><subject>Genetic control</subject><subject>Genome</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Inbreeding</subject><subject>Linkage analysis</subject><subject>Local population</subject><subject>Movement</subject><subject>Odds Ratio</subject><subject>Oryzias - genetics</subject><subject>Oryzias latipes</subject><subject>Photic Stimulation</subject><subject>Polymorphism, Genetic</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Progeny</subject><subject>Properties (attributes)</subject><subject>Quantitative Trait Loci</subject><subject>Reflex, Startle - genetics</subject><subject>Rodents</subject><subject>Science</subject><subject>Sensitivity</subject><subject>Species extinction</subject><subject>Startle response</subject><subject>Strains (organisms)</subject><subject>Vertebrates</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1vFCEUJUZj29V_YHQSX3zZlcuF-XgxaRptmzTxRZ8Jcwe6rOywwmwT_71sd9q0xgcCXM45nAOXsXfAV4ANfN7EfRpNWO3iaFccQCjRvGCn0KFY1oLjyyfrE3aW84ZzhW1dv2YnQmGHZZwycWlHO3mqKI5TiqGKrsqTSVOwVW_X5s7HVPmx2trB_DKV83n9hr1yJmT7dp4X7Oe3rz8urpY33y-vL85vlqQ6MS3JSOQWat523CilnEKSNSqSOJhSlrwhM9BgkBO3fU_Qkyv7pmuVE9Dggn046u5CzHqOmzXUQnayEwAFcX1EDNFs9C75rUl_dDRe3xdiutUliadgdW-E5EoKRdDKGpq-QWxt54CcatpiYsG-zLft-xKWbHkOE56JPj8Z_VrfxjstBQLHg5lPs0CKv_c2T3rrM9kQzGjj_t63Qim4VAX68R_o_9PJI4pSzDlZ92gGuD60wANLH1pAzy1QaO-fBnkkPfw5_gWzmK3p</recordid><startdate>20141113</startdate><enddate>20141113</enddate><creator>Tsuboko, Satomi</creator><creator>Kimura, Tetsuaki</creator><creator>Shinya, Minori</creator><creator>Suehiro, Yuji</creator><creator>Okuyama, Teruhiro</creator><creator>Shimada, Atsuko</creator><creator>Takeda, Hiroyuki</creator><creator>Naruse, Kiyoshi</creator><creator>Kubo, Takeo</creator><creator>Takeuchi, Hideaki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141113</creationdate><title>Genetic control of startle behavior in medaka fish</title><author>Tsuboko, Satomi ; Kimura, Tetsuaki ; Shinya, Minori ; Suehiro, Yuji ; Okuyama, Teruhiro ; Shimada, Atsuko ; Takeda, Hiroyuki ; Naruse, Kiyoshi ; Kubo, Takeo ; Takeuchi, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-ca430e160890a555f53c4635c43da160407cadcda30c0ebbc1bcfdcd7985f2173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptiveness</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Attenuation</topic><topic>Behavior, Animal</topic><topic>Biology and Life Sciences</topic><topic>Crosses, Genetic</topic><topic>Gene mapping</topic><topic>Genetic control</topic><topic>Genome</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Inbreeding</topic><topic>Linkage analysis</topic><topic>Local population</topic><topic>Movement</topic><topic>Odds Ratio</topic><topic>Oryzias - genetics</topic><topic>Oryzias latipes</topic><topic>Photic Stimulation</topic><topic>Polymorphism, Genetic</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Progeny</topic><topic>Properties (attributes)</topic><topic>Quantitative Trait Loci</topic><topic>Reflex, Startle - genetics</topic><topic>Rodents</topic><topic>Science</topic><topic>Sensitivity</topic><topic>Species extinction</topic><topic>Startle response</topic><topic>Strains (organisms)</topic><topic>Vertebrates</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuboko, Satomi</creatorcontrib><creatorcontrib>Kimura, Tetsuaki</creatorcontrib><creatorcontrib>Shinya, Minori</creatorcontrib><creatorcontrib>Suehiro, Yuji</creatorcontrib><creatorcontrib>Okuyama, Teruhiro</creatorcontrib><creatorcontrib>Shimada, Atsuko</creatorcontrib><creatorcontrib>Takeda, Hiroyuki</creatorcontrib><creatorcontrib>Naruse, Kiyoshi</creatorcontrib><creatorcontrib>Kubo, Takeo</creatorcontrib><creatorcontrib>Takeuchi, Hideaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuboko, Satomi</au><au>Kimura, Tetsuaki</au><au>Shinya, Minori</au><au>Suehiro, Yuji</au><au>Okuyama, Teruhiro</au><au>Shimada, Atsuko</au><au>Takeda, Hiroyuki</au><au>Naruse, Kiyoshi</au><au>Kubo, Takeo</au><au>Takeuchi, Hideaki</au><au>Burgess, Harold A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic control of startle behavior in medaka fish</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-13</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e112527</spage><epage>e112527</epage><pages>e112527-e112527</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25393539</pmid><doi>10.1371/journal.pone.0112527</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-11, Vol.9 (11), p.e112527-e112527
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1624949211
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptiveness
Animal behavior
Animals
Attenuation
Behavior, Animal
Biology and Life Sciences
Crosses, Genetic
Gene mapping
Genetic control
Genome
Genomics
Genotype
Genotypes
Inbreeding
Linkage analysis
Local population
Movement
Odds Ratio
Oryzias - genetics
Oryzias latipes
Photic Stimulation
Polymorphism, Genetic
Population genetics
Populations
Progeny
Properties (attributes)
Quantitative Trait Loci
Reflex, Startle - genetics
Rodents
Science
Sensitivity
Species extinction
Startle response
Strains (organisms)
Vertebrates
Visual stimuli
title Genetic control of startle behavior in medaka fish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20control%20of%20startle%20behavior%20in%20medaka%20fish&rft.jtitle=PloS%20one&rft.au=Tsuboko,%20Satomi&rft.date=2014-11-13&rft.volume=9&rft.issue=11&rft.spage=e112527&rft.epage=e112527&rft.pages=e112527-e112527&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0112527&rft_dat=%3Cproquest_plos_%3E3495184331%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624949211&rft_id=info:pmid/25393539&rft_doaj_id=oai_doaj_org_article_ba2405425c184617b7338e9f1cf578da&rfr_iscdi=true