Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutam...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-11, Vol.9 (11), p.e112649-e112649 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e112649 |
---|---|
container_issue | 11 |
container_start_page | e112649 |
container_title | PloS one |
container_volume | 9 |
creator | Feehily, Conor Finnerty, Aiden Casey, Pat G Hill, Colin Gahan, Cormac G M O'Byrne, Conor P Karatzas, Kimon-Andreas G |
description | The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains. |
doi_str_mv | 10.1371/journal.pone.0112649 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1622596494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418635177</galeid><doaj_id>oai_doaj_org_article_fffec64812754c629c7e0dadd27b1abc</doaj_id><sourcerecordid>A418635177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7TpzwgDRtY0yqNIkBr5ZrX1JPTlxsp1o_E18St82mFu0B5SGnu9_9zz7fZdlrgqck5-TTrRt8L-106XqYYkJoyeon2TGpczopKc6f7tlH2YsQbjEu8qosn2dHdGPUjB9nf87NCnwLfUSwcnaIxvXINSguAEkVzcrENZK9Rh7awcr9cJto2ckISIOSfu7u1lYGQGEdInQBmR7NTDK9kahzvVPr6FIhCOji8nwCW1WCGc5vPiPvLGwzVsYPFnq1C0tlNIop5mVyvcyeNdIGeDX-T7KfXy9-nH2bzK4vr85OZxNV1jROCGMMNyVnKuc6Z4woPSd1WZEKq6YuOSmAK1IUicK8IkSzeSVJw3TdVJBjmp9kb3e6S-uCGPscBCkpLerUZZaIqx2hnbwVS2866dfCSSO2DudbIX00yoJomgZUySpCecFUSWvFAWupNeVzIucqaX0Zqw3zDrRKT-GlPRA9jPRmIVq3EoxSXuVVEvgwCnj3e4AQRWeCAmtlD27YnpulQag4T-i7f9DHbzdSrUwXMH3jUl21ERWnjFRlXpCt1vQRKn0aOqPSUDYm-Q8SPh4kJCbCXWzlEIK4uvn-_-z1r0P2_R67AGnjIoyjHA5BtgOVdyF4aB6aTLDY7NR9N8Rmp8S4Uyntzf4DPSTdL1H-F6glHbc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622596494</pqid></control><display><type>article</type><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G</creator><contributor>Neyrolles, Olivier</contributor><creatorcontrib>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G ; Neyrolles, Olivier</creatorcontrib><description>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0112649</identifier><identifier>PMID: 25386947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acid resistance ; Acids ; Analysis ; Animals ; Antiport ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell Line - microbiology ; Decarboxylation ; Divergence ; Enzymes ; Evolution ; Evolution, Molecular ; Female ; Food processing industry ; GABA ; gamma-Aminobutyric Acid - metabolism ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Knockdown Techniques ; Genes ; Glutamate ; Glutamate decarboxylase ; Glutamate Decarboxylase - genetics ; Glutamate Decarboxylase - metabolism ; Homeostasis ; Humans ; Hydrogen ions ; Hydrogen-Ion Concentration ; Infections ; Inoculation ; Intracellular ; Listeria ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Listeria monocytogenes - pathogenicity ; Listeriosis - microbiology ; Macrophages - microbiology ; Mice, Inbred BALB C ; Multigene Family ; Mutants ; Mutation ; Pathogens ; pH effects ; Protons ; Science ; Strains (organisms) ; Stress response ; Virulence ; γ-Aminobutyric acid</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e112649-e112649</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Feehily et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Feehily et al 2014 Feehily et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</citedby><cites>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227838/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227838/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25386947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neyrolles, Olivier</contributor><creatorcontrib>Feehily, Conor</creatorcontrib><creatorcontrib>Finnerty, Aiden</creatorcontrib><creatorcontrib>Casey, Pat G</creatorcontrib><creatorcontrib>Hill, Colin</creatorcontrib><creatorcontrib>Gahan, Cormac G M</creatorcontrib><creatorcontrib>O'Byrne, Conor P</creatorcontrib><creatorcontrib>Karatzas, Kimon-Andreas G</creatorcontrib><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</description><subject>Acid resistance</subject><subject>Acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antiport</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Line - microbiology</subject><subject>Decarboxylation</subject><subject>Divergence</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Food processing industry</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Glutamate</subject><subject>Glutamate decarboxylase</subject><subject>Glutamate Decarboxylase - genetics</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen ions</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Intracellular</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Listeriosis - microbiology</subject><subject>Macrophages - microbiology</subject><subject>Mice, Inbred BALB C</subject><subject>Multigene Family</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>pH effects</subject><subject>Protons</subject><subject>Science</subject><subject>Strains (organisms)</subject><subject>Stress response</subject><subject>Virulence</subject><subject>γ-Aminobutyric acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7TpzwgDRtY0yqNIkBr5ZrX1JPTlxsp1o_E18St82mFu0B5SGnu9_9zz7fZdlrgqck5-TTrRt8L-106XqYYkJoyeon2TGpczopKc6f7tlH2YsQbjEu8qosn2dHdGPUjB9nf87NCnwLfUSwcnaIxvXINSguAEkVzcrENZK9Rh7awcr9cJto2ckISIOSfu7u1lYGQGEdInQBmR7NTDK9kahzvVPr6FIhCOji8nwCW1WCGc5vPiPvLGwzVsYPFnq1C0tlNIop5mVyvcyeNdIGeDX-T7KfXy9-nH2bzK4vr85OZxNV1jROCGMMNyVnKuc6Z4woPSd1WZEKq6YuOSmAK1IUicK8IkSzeSVJw3TdVJBjmp9kb3e6S-uCGPscBCkpLerUZZaIqx2hnbwVS2866dfCSSO2DudbIX00yoJomgZUySpCecFUSWvFAWupNeVzIucqaX0Zqw3zDrRKT-GlPRA9jPRmIVq3EoxSXuVVEvgwCnj3e4AQRWeCAmtlD27YnpulQag4T-i7f9DHbzdSrUwXMH3jUl21ERWnjFRlXpCt1vQRKn0aOqPSUDYm-Q8SPh4kJCbCXWzlEIK4uvn-_-z1r0P2_R67AGnjIoyjHA5BtgOVdyF4aB6aTLDY7NR9N8Rmp8S4Uyntzf4DPSTdL1H-F6glHbc</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Feehily, Conor</creator><creator>Finnerty, Aiden</creator><creator>Casey, Pat G</creator><creator>Hill, Colin</creator><creator>Gahan, Cormac G M</creator><creator>O'Byrne, Conor P</creator><creator>Karatzas, Kimon-Andreas G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141111</creationdate><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><author>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid resistance</topic><topic>Acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antiport</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Line - microbiology</topic><topic>Decarboxylation</topic><topic>Divergence</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Food processing industry</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Glutamate</topic><topic>Glutamate decarboxylase</topic><topic>Glutamate Decarboxylase - genetics</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen ions</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Intracellular</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Listeriosis - microbiology</topic><topic>Macrophages - microbiology</topic><topic>Mice, Inbred BALB C</topic><topic>Multigene Family</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>pH effects</topic><topic>Protons</topic><topic>Science</topic><topic>Strains (organisms)</topic><topic>Stress response</topic><topic>Virulence</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feehily, Conor</creatorcontrib><creatorcontrib>Finnerty, Aiden</creatorcontrib><creatorcontrib>Casey, Pat G</creatorcontrib><creatorcontrib>Hill, Colin</creatorcontrib><creatorcontrib>Gahan, Cormac G M</creatorcontrib><creatorcontrib>O'Byrne, Conor P</creatorcontrib><creatorcontrib>Karatzas, Kimon-Andreas G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feehily, Conor</au><au>Finnerty, Aiden</au><au>Casey, Pat G</au><au>Hill, Colin</au><au>Gahan, Cormac G M</au><au>O'Byrne, Conor P</au><au>Karatzas, Kimon-Andreas G</au><au>Neyrolles, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-11</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e112649</spage><epage>e112649</epage><pages>e112649-e112649</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25386947</pmid><doi>10.1371/journal.pone.0112649</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-11, Vol.9 (11), p.e112649-e112649 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1622596494 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acid resistance Acids Analysis Animals Antiport Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biology and Life Sciences Cell Line - microbiology Decarboxylation Divergence Enzymes Evolution Evolution, Molecular Female Food processing industry GABA gamma-Aminobutyric Acid - metabolism Gene expression Gene Expression Regulation, Bacterial Gene Knockdown Techniques Genes Glutamate Glutamate decarboxylase Glutamate Decarboxylase - genetics Glutamate Decarboxylase - metabolism Homeostasis Humans Hydrogen ions Hydrogen-Ion Concentration Infections Inoculation Intracellular Listeria Listeria monocytogenes Listeria monocytogenes - genetics Listeria monocytogenes - metabolism Listeria monocytogenes - pathogenicity Listeriosis - microbiology Macrophages - microbiology Mice, Inbred BALB C Multigene Family Mutants Mutation Pathogens pH effects Protons Science Strains (organisms) Stress response Virulence γ-Aminobutyric acid |
title | Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20evolution%20of%20the%20activity%20and%20regulation%20of%20the%20glutamate%20decarboxylase%20systems%20in%20Listeria%20monocytogenes%20EGD-e%20and%2010403S:%20roles%20in%20virulence%20and%20acid%20tolerance&rft.jtitle=PloS%20one&rft.au=Feehily,%20Conor&rft.date=2014-11-11&rft.volume=9&rft.issue=11&rft.spage=e112649&rft.epage=e112649&rft.pages=e112649-e112649&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0112649&rft_dat=%3Cgale_plos_%3EA418635177%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622596494&rft_id=info:pmid/25386947&rft_galeid=A418635177&rft_doaj_id=oai_doaj_org_article_fffec64812754c629c7e0dadd27b1abc&rfr_iscdi=true |