Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance

The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-11, Vol.9 (11), p.e112649-e112649
Hauptverfasser: Feehily, Conor, Finnerty, Aiden, Casey, Pat G, Hill, Colin, Gahan, Cormac G M, O'Byrne, Conor P, Karatzas, Kimon-Andreas G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e112649
container_issue 11
container_start_page e112649
container_title PloS one
container_volume 9
creator Feehily, Conor
Finnerty, Aiden
Casey, Pat G
Hill, Colin
Gahan, Cormac G M
O'Byrne, Conor P
Karatzas, Kimon-Andreas G
description The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
doi_str_mv 10.1371/journal.pone.0112649
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1622596494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418635177</galeid><doaj_id>oai_doaj_org_article_fffec64812754c629c7e0dadd27b1abc</doaj_id><sourcerecordid>A418635177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7TpzwgDRtY0yqNIkBr5ZrX1JPTlxsp1o_E18St82mFu0B5SGnu9_9zz7fZdlrgqck5-TTrRt8L-106XqYYkJoyeon2TGpczopKc6f7tlH2YsQbjEu8qosn2dHdGPUjB9nf87NCnwLfUSwcnaIxvXINSguAEkVzcrENZK9Rh7awcr9cJto2ckISIOSfu7u1lYGQGEdInQBmR7NTDK9kahzvVPr6FIhCOji8nwCW1WCGc5vPiPvLGwzVsYPFnq1C0tlNIop5mVyvcyeNdIGeDX-T7KfXy9-nH2bzK4vr85OZxNV1jROCGMMNyVnKuc6Z4woPSd1WZEKq6YuOSmAK1IUicK8IkSzeSVJw3TdVJBjmp9kb3e6S-uCGPscBCkpLerUZZaIqx2hnbwVS2866dfCSSO2DudbIX00yoJomgZUySpCecFUSWvFAWupNeVzIucqaX0Zqw3zDrRKT-GlPRA9jPRmIVq3EoxSXuVVEvgwCnj3e4AQRWeCAmtlD27YnpulQag4T-i7f9DHbzdSrUwXMH3jUl21ERWnjFRlXpCt1vQRKn0aOqPSUDYm-Q8SPh4kJCbCXWzlEIK4uvn-_-z1r0P2_R67AGnjIoyjHA5BtgOVdyF4aB6aTLDY7NR9N8Rmp8S4Uyntzf4DPSTdL1H-F6glHbc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622596494</pqid></control><display><type>article</type><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G</creator><contributor>Neyrolles, Olivier</contributor><creatorcontrib>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G ; Neyrolles, Olivier</creatorcontrib><description>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 &amp; D3) and two antiporter genes (gadT1 &amp; gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0112649</identifier><identifier>PMID: 25386947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acid resistance ; Acids ; Analysis ; Animals ; Antiport ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell Line - microbiology ; Decarboxylation ; Divergence ; Enzymes ; Evolution ; Evolution, Molecular ; Female ; Food processing industry ; GABA ; gamma-Aminobutyric Acid - metabolism ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Knockdown Techniques ; Genes ; Glutamate ; Glutamate decarboxylase ; Glutamate Decarboxylase - genetics ; Glutamate Decarboxylase - metabolism ; Homeostasis ; Humans ; Hydrogen ions ; Hydrogen-Ion Concentration ; Infections ; Inoculation ; Intracellular ; Listeria ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Listeria monocytogenes - pathogenicity ; Listeriosis - microbiology ; Macrophages - microbiology ; Mice, Inbred BALB C ; Multigene Family ; Mutants ; Mutation ; Pathogens ; pH effects ; Protons ; Science ; Strains (organisms) ; Stress response ; Virulence ; γ-Aminobutyric acid</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e112649-e112649</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Feehily et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Feehily et al 2014 Feehily et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</citedby><cites>FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227838/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227838/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25386947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neyrolles, Olivier</contributor><creatorcontrib>Feehily, Conor</creatorcontrib><creatorcontrib>Finnerty, Aiden</creatorcontrib><creatorcontrib>Casey, Pat G</creatorcontrib><creatorcontrib>Hill, Colin</creatorcontrib><creatorcontrib>Gahan, Cormac G M</creatorcontrib><creatorcontrib>O'Byrne, Conor P</creatorcontrib><creatorcontrib>Karatzas, Kimon-Andreas G</creatorcontrib><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 &amp; D3) and two antiporter genes (gadT1 &amp; gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</description><subject>Acid resistance</subject><subject>Acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antiport</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Line - microbiology</subject><subject>Decarboxylation</subject><subject>Divergence</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Food processing industry</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Glutamate</subject><subject>Glutamate decarboxylase</subject><subject>Glutamate Decarboxylase - genetics</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen ions</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Intracellular</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Listeriosis - microbiology</subject><subject>Macrophages - microbiology</subject><subject>Mice, Inbred BALB C</subject><subject>Multigene Family</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>pH effects</subject><subject>Protons</subject><subject>Science</subject><subject>Strains (organisms)</subject><subject>Stress response</subject><subject>Virulence</subject><subject>γ-Aminobutyric acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7TpzwgDRtY0yqNIkBr5ZrX1JPTlxsp1o_E18St82mFu0B5SGnu9_9zz7fZdlrgqck5-TTrRt8L-106XqYYkJoyeon2TGpczopKc6f7tlH2YsQbjEu8qosn2dHdGPUjB9nf87NCnwLfUSwcnaIxvXINSguAEkVzcrENZK9Rh7awcr9cJto2ckISIOSfu7u1lYGQGEdInQBmR7NTDK9kahzvVPr6FIhCOji8nwCW1WCGc5vPiPvLGwzVsYPFnq1C0tlNIop5mVyvcyeNdIGeDX-T7KfXy9-nH2bzK4vr85OZxNV1jROCGMMNyVnKuc6Z4woPSd1WZEKq6YuOSmAK1IUicK8IkSzeSVJw3TdVJBjmp9kb3e6S-uCGPscBCkpLerUZZaIqx2hnbwVS2866dfCSSO2DudbIX00yoJomgZUySpCecFUSWvFAWupNeVzIucqaX0Zqw3zDrRKT-GlPRA9jPRmIVq3EoxSXuVVEvgwCnj3e4AQRWeCAmtlD27YnpulQag4T-i7f9DHbzdSrUwXMH3jUl21ERWnjFRlXpCt1vQRKn0aOqPSUDYm-Q8SPh4kJCbCXWzlEIK4uvn-_-z1r0P2_R67AGnjIoyjHA5BtgOVdyF4aB6aTLDY7NR9N8Rmp8S4Uyntzf4DPSTdL1H-F6glHbc</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Feehily, Conor</creator><creator>Finnerty, Aiden</creator><creator>Casey, Pat G</creator><creator>Hill, Colin</creator><creator>Gahan, Cormac G M</creator><creator>O'Byrne, Conor P</creator><creator>Karatzas, Kimon-Andreas G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141111</creationdate><title>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</title><author>Feehily, Conor ; Finnerty, Aiden ; Casey, Pat G ; Hill, Colin ; Gahan, Cormac G M ; O'Byrne, Conor P ; Karatzas, Kimon-Andreas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-14440f674c37d3441cdb1968180cf96715e7c15544007811d4b8a1f4d9f8e3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid resistance</topic><topic>Acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antiport</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Line - microbiology</topic><topic>Decarboxylation</topic><topic>Divergence</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Food processing industry</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Glutamate</topic><topic>Glutamate decarboxylase</topic><topic>Glutamate Decarboxylase - genetics</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen ions</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Intracellular</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Listeriosis - microbiology</topic><topic>Macrophages - microbiology</topic><topic>Mice, Inbred BALB C</topic><topic>Multigene Family</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>pH effects</topic><topic>Protons</topic><topic>Science</topic><topic>Strains (organisms)</topic><topic>Stress response</topic><topic>Virulence</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feehily, Conor</creatorcontrib><creatorcontrib>Finnerty, Aiden</creatorcontrib><creatorcontrib>Casey, Pat G</creatorcontrib><creatorcontrib>Hill, Colin</creatorcontrib><creatorcontrib>Gahan, Cormac G M</creatorcontrib><creatorcontrib>O'Byrne, Conor P</creatorcontrib><creatorcontrib>Karatzas, Kimon-Andreas G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feehily, Conor</au><au>Finnerty, Aiden</au><au>Casey, Pat G</au><au>Hill, Colin</au><au>Gahan, Cormac G M</au><au>O'Byrne, Conor P</au><au>Karatzas, Kimon-Andreas G</au><au>Neyrolles, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-11</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e112649</spage><epage>e112649</epage><pages>e112649-e112649</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 &amp; D3) and two antiporter genes (gadT1 &amp; gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25386947</pmid><doi>10.1371/journal.pone.0112649</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-11, Vol.9 (11), p.e112649-e112649
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1622596494
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acid resistance
Acids
Analysis
Animals
Antiport
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology and Life Sciences
Cell Line - microbiology
Decarboxylation
Divergence
Enzymes
Evolution
Evolution, Molecular
Female
Food processing industry
GABA
gamma-Aminobutyric Acid - metabolism
Gene expression
Gene Expression Regulation, Bacterial
Gene Knockdown Techniques
Genes
Glutamate
Glutamate decarboxylase
Glutamate Decarboxylase - genetics
Glutamate Decarboxylase - metabolism
Homeostasis
Humans
Hydrogen ions
Hydrogen-Ion Concentration
Infections
Inoculation
Intracellular
Listeria
Listeria monocytogenes
Listeria monocytogenes - genetics
Listeria monocytogenes - metabolism
Listeria monocytogenes - pathogenicity
Listeriosis - microbiology
Macrophages - microbiology
Mice, Inbred BALB C
Multigene Family
Mutants
Mutation
Pathogens
pH effects
Protons
Science
Strains (organisms)
Stress response
Virulence
γ-Aminobutyric acid
title Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20evolution%20of%20the%20activity%20and%20regulation%20of%20the%20glutamate%20decarboxylase%20systems%20in%20Listeria%20monocytogenes%20EGD-e%20and%2010403S:%20roles%20in%20virulence%20and%20acid%20tolerance&rft.jtitle=PloS%20one&rft.au=Feehily,%20Conor&rft.date=2014-11-11&rft.volume=9&rft.issue=11&rft.spage=e112649&rft.epage=e112649&rft.pages=e112649-e112649&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0112649&rft_dat=%3Cgale_plos_%3EA418635177%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622596494&rft_id=info:pmid/25386947&rft_galeid=A418635177&rft_doaj_id=oai_doaj_org_article_fffec64812754c629c7e0dadd27b1abc&rfr_iscdi=true