Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice
Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in bl...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-10, Vol.9 (10), p.e109024 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e109024 |
container_title | PloS one |
container_volume | 9 |
creator | van Kampen, Erik Beaslas, Olivier Hildebrand, Reeni B Lammers, Bart Van Berkel, Theo J C Olkkonen, Vesa M Van Eck, Miranda |
description | Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis. |
doi_str_mv | 10.1371/journal.pone.0109024 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1617220134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417676914</galeid><doaj_id>oai_doaj_org_article_2121587ad62b451485dd65b5d379df5e</doaj_id><sourcerecordid>A417676914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a46e5559f3ebbe3154c711d8a8c01138af52237e81804040b0928b3c8bc574153</originalsourceid><addsrcrecordid>eNqNkltr2zAYhs3YWA_bPxibYDDYRTKdbd8MSncKBAI73QpZ-pwodSxPsrv2309p3BLDBkMgCel5X0mf3ix7QfCcsJy82_ohtLqZd76FOSa4xJQ_yk5JyehMUsweH81PsrMYtxgLVkj5NDuhgvEc5_g0G1ahK5CF2hkHrblFrkVVckQ7HYL_PbMQ3DVYZKBpIgpgBwMR6X4DwUfTpL53BjUQnW9RF_w6QLybJ5_lh2VSGOh6H9BV682VH3q0cwaeZU9q3UR4Po7n2Y9PH79ffpktV58XlxfLmZEl7WeaSxBClDWDqgJGBDc5IbbQhcGEsELXglKWQ0EKzFOrcEmLipmiMiLnRLDz7NXBt2t8VGPFoiKS5JRiwngiFgfCer1VXXDp3bfKa6fuFnxYKx3SExtQlFAiilxbSSsuCC-EtVJUwrK8tLWA5PV-PG2odmANtH3QzcR0utO6jVr7a8UpLktZJoPXo0HwvwaI_T-uPFJrnW7l2tonM7Nz0agLTnKZy5LsqflfqNQspB9IP1y7tD4RvJ0IEtPDTb_WQ4xq8e3r_7Orn1P2zRG7Ad30m-iboU8piVOQH0CTohUD1A-VI1jtI39fDbWPvBojn2Qvj6v-ILrPOPsD_vv7-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1617220134</pqid></control><display><type>article</type><title>Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>van Kampen, Erik ; Beaslas, Olivier ; Hildebrand, Reeni B ; Lammers, Bart ; Van Berkel, Theo J C ; Olkkonen, Vesa M ; Van Eck, Miranda</creator><contributor>Kocher, Olivier</contributor><creatorcontrib>van Kampen, Erik ; Beaslas, Olivier ; Hildebrand, Reeni B ; Lammers, Bart ; Van Berkel, Theo J C ; Olkkonen, Vesa M ; Van Eck, Miranda ; Kocher, Olivier</creatorcontrib><description>Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0109024</identifier><identifier>PMID: 25347070</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ABCA1 protein ; Animals ; Antigens, CD - metabolism ; Antigens, Differentiation, Myelomonocytic - metabolism ; Apolipoprotein A ; Apolipoprotein A-I ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - genetics ; Atherosclerosis - pathology ; Atherosclerosis - therapy ; ATP Binding Cassette Transporter 1 - genetics ; ATP Binding Cassette Transporter 1 - metabolism ; ATP-binding protein ; Biology and Life Sciences ; Biomarkers ; Blood cholesterol ; Bone marrow ; Bone Marrow Cells - metabolism ; Bone marrow transplantation ; Carotid arteries ; Cholesterol ; Cholesterol - blood ; Cholesterol - metabolism ; Clonal deletion ; Cytokines ; Cytokines - metabolism ; Diet ; Disease Models, Animal ; Efflux ; Female ; Foam ; Foam Cells - pathology ; Foams ; Gene Expression ; Heart attacks ; High cholesterol diet ; High density lipoprotein ; High fat diet ; Homeostasis ; House mouse ; Immunology ; Inflammation ; Inflammation Mediators - metabolism ; Interleukin 6 ; Laboratories ; Lesions ; Leukocyte Count ; Lipids ; Lipoproteins ; Lipoproteins (high density) ; Lipoproteins (low density) ; Lipoproteins (very low density) ; Low density lipoprotein ; Low density lipoproteins ; Macrophages ; Macrophages - metabolism ; Male ; Medical research ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Knockout ; Mustard Gas ; Mutation ; Peritoneum ; Plaque, Atherosclerotic - genetics ; Plaque, Atherosclerotic - metabolism ; Plaque, Atherosclerotic - pathology ; Protein binding ; Proteins ; Receptors, LDL - deficiency ; Receptors, LDL - genetics ; Receptors, Steroid - deficiency ; Receptors, Steroid - genetics ; Rodents ; Serum levels ; Stem cell transplantation ; Sterols ; Time Factors ; Trends ; Triglycerides - blood ; Tumor necrosis factor-α ; Veins & arteries</subject><ispartof>PloS one, 2014-10, Vol.9 (10), p.e109024</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 van Kampen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 van Kampen et al 2014 van Kampen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a46e5559f3ebbe3154c711d8a8c01138af52237e81804040b0928b3c8bc574153</citedby><cites>FETCH-LOGICAL-c692t-a46e5559f3ebbe3154c711d8a8c01138af52237e81804040b0928b3c8bc574153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209969/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209969/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25347070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kocher, Olivier</contributor><creatorcontrib>van Kampen, Erik</creatorcontrib><creatorcontrib>Beaslas, Olivier</creatorcontrib><creatorcontrib>Hildebrand, Reeni B</creatorcontrib><creatorcontrib>Lammers, Bart</creatorcontrib><creatorcontrib>Van Berkel, Theo J C</creatorcontrib><creatorcontrib>Olkkonen, Vesa M</creatorcontrib><creatorcontrib>Van Eck, Miranda</creatorcontrib><title>Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.</description><subject>ABCA1 protein</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Antigens, Differentiation, Myelomonocytic - metabolism</subject><subject>Apolipoprotein A</subject><subject>Apolipoprotein A-I</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - pathology</subject><subject>Atherosclerosis - therapy</subject><subject>ATP Binding Cassette Transporter 1 - genetics</subject><subject>ATP Binding Cassette Transporter 1 - metabolism</subject><subject>ATP-binding protein</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Blood cholesterol</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone marrow transplantation</subject><subject>Carotid arteries</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Clonal deletion</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Diet</subject><subject>Disease Models, Animal</subject><subject>Efflux</subject><subject>Female</subject><subject>Foam</subject><subject>Foam Cells - pathology</subject><subject>Foams</subject><subject>Gene Expression</subject><subject>Heart attacks</subject><subject>High cholesterol diet</subject><subject>High density lipoprotein</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>House mouse</subject><subject>Immunology</subject><subject>Inflammation</subject><subject>Inflammation Mediators - metabolism</subject><subject>Interleukin 6</subject><subject>Laboratories</subject><subject>Lesions</subject><subject>Leukocyte Count</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins (high density)</subject><subject>Lipoproteins (low density)</subject><subject>Lipoproteins (very low density)</subject><subject>Low density lipoprotein</subject><subject>Low density lipoproteins</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mustard Gas</subject><subject>Mutation</subject><subject>Peritoneum</subject><subject>Plaque, Atherosclerotic - genetics</subject><subject>Plaque, Atherosclerotic - metabolism</subject><subject>Plaque, Atherosclerotic - pathology</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Receptors, LDL - deficiency</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, Steroid - deficiency</subject><subject>Receptors, Steroid - genetics</subject><subject>Rodents</subject><subject>Serum levels</subject><subject>Stem cell transplantation</subject><subject>Sterols</subject><subject>Time Factors</subject><subject>Trends</subject><subject>Triglycerides - blood</subject><subject>Tumor necrosis factor-α</subject><subject>Veins & arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr2zAYhs3YWA_bPxibYDDYRTKdbd8MSncKBAI73QpZ-pwodSxPsrv2309p3BLDBkMgCel5X0mf3ix7QfCcsJy82_ohtLqZd76FOSa4xJQ_yk5JyehMUsweH81PsrMYtxgLVkj5NDuhgvEc5_g0G1ahK5CF2hkHrblFrkVVckQ7HYL_PbMQ3DVYZKBpIgpgBwMR6X4DwUfTpL53BjUQnW9RF_w6QLybJ5_lh2VSGOh6H9BV682VH3q0cwaeZU9q3UR4Po7n2Y9PH79ffpktV58XlxfLmZEl7WeaSxBClDWDqgJGBDc5IbbQhcGEsELXglKWQ0EKzFOrcEmLipmiMiLnRLDz7NXBt2t8VGPFoiKS5JRiwngiFgfCer1VXXDp3bfKa6fuFnxYKx3SExtQlFAiilxbSSsuCC-EtVJUwrK8tLWA5PV-PG2odmANtH3QzcR0utO6jVr7a8UpLktZJoPXo0HwvwaI_T-uPFJrnW7l2tonM7Nz0agLTnKZy5LsqflfqNQspB9IP1y7tD4RvJ0IEtPDTb_WQ4xq8e3r_7Orn1P2zRG7Ad30m-iboU8piVOQH0CTohUD1A-VI1jtI39fDbWPvBojn2Qvj6v-ILrPOPsD_vv7-w</recordid><startdate>20141027</startdate><enddate>20141027</enddate><creator>van Kampen, Erik</creator><creator>Beaslas, Olivier</creator><creator>Hildebrand, Reeni B</creator><creator>Lammers, Bart</creator><creator>Van Berkel, Theo J C</creator><creator>Olkkonen, Vesa M</creator><creator>Van Eck, Miranda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141027</creationdate><title>Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice</title><author>van Kampen, Erik ; Beaslas, Olivier ; Hildebrand, Reeni B ; Lammers, Bart ; Van Berkel, Theo J C ; Olkkonen, Vesa M ; Van Eck, Miranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a46e5559f3ebbe3154c711d8a8c01138af52237e81804040b0928b3c8bc574153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ABCA1 protein</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Antigens, Differentiation, Myelomonocytic - metabolism</topic><topic>Apolipoprotein A</topic><topic>Apolipoprotein A-I</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - pathology</topic><topic>Atherosclerosis - therapy</topic><topic>ATP Binding Cassette Transporter 1 - genetics</topic><topic>ATP Binding Cassette Transporter 1 - metabolism</topic><topic>ATP-binding protein</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Blood cholesterol</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone marrow transplantation</topic><topic>Carotid arteries</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Clonal deletion</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Diet</topic><topic>Disease Models, Animal</topic><topic>Efflux</topic><topic>Female</topic><topic>Foam</topic><topic>Foam Cells - pathology</topic><topic>Foams</topic><topic>Gene Expression</topic><topic>Heart attacks</topic><topic>High cholesterol diet</topic><topic>High density lipoprotein</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>House mouse</topic><topic>Immunology</topic><topic>Inflammation</topic><topic>Inflammation Mediators - metabolism</topic><topic>Interleukin 6</topic><topic>Laboratories</topic><topic>Lesions</topic><topic>Leukocyte Count</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins (high density)</topic><topic>Lipoproteins (low density)</topic><topic>Lipoproteins (very low density)</topic><topic>Low density lipoprotein</topic><topic>Low density lipoproteins</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mustard Gas</topic><topic>Mutation</topic><topic>Peritoneum</topic><topic>Plaque, Atherosclerotic - genetics</topic><topic>Plaque, Atherosclerotic - metabolism</topic><topic>Plaque, Atherosclerotic - pathology</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Receptors, LDL - deficiency</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, Steroid - deficiency</topic><topic>Receptors, Steroid - genetics</topic><topic>Rodents</topic><topic>Serum levels</topic><topic>Stem cell transplantation</topic><topic>Sterols</topic><topic>Time Factors</topic><topic>Trends</topic><topic>Triglycerides - blood</topic><topic>Tumor necrosis factor-α</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Kampen, Erik</creatorcontrib><creatorcontrib>Beaslas, Olivier</creatorcontrib><creatorcontrib>Hildebrand, Reeni B</creatorcontrib><creatorcontrib>Lammers, Bart</creatorcontrib><creatorcontrib>Van Berkel, Theo J C</creatorcontrib><creatorcontrib>Olkkonen, Vesa M</creatorcontrib><creatorcontrib>Van Eck, Miranda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Kampen, Erik</au><au>Beaslas, Olivier</au><au>Hildebrand, Reeni B</au><au>Lammers, Bart</au><au>Van Berkel, Theo J C</au><au>Olkkonen, Vesa M</au><au>Van Eck, Miranda</au><au>Kocher, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-10-27</date><risdate>2014</risdate><volume>9</volume><issue>10</issue><spage>e109024</spage><pages>e109024-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25347070</pmid><doi>10.1371/journal.pone.0109024</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-10, Vol.9 (10), p.e109024 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1617220134 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | ABCA1 protein Animals Antigens, CD - metabolism Antigens, Differentiation, Myelomonocytic - metabolism Apolipoprotein A Apolipoprotein A-I Arteriosclerosis Atherosclerosis Atherosclerosis - genetics Atherosclerosis - pathology Atherosclerosis - therapy ATP Binding Cassette Transporter 1 - genetics ATP Binding Cassette Transporter 1 - metabolism ATP-binding protein Biology and Life Sciences Biomarkers Blood cholesterol Bone marrow Bone Marrow Cells - metabolism Bone marrow transplantation Carotid arteries Cholesterol Cholesterol - blood Cholesterol - metabolism Clonal deletion Cytokines Cytokines - metabolism Diet Disease Models, Animal Efflux Female Foam Foam Cells - pathology Foams Gene Expression Heart attacks High cholesterol diet High density lipoprotein High fat diet Homeostasis House mouse Immunology Inflammation Inflammation Mediators - metabolism Interleukin 6 Laboratories Lesions Leukocyte Count Lipids Lipoproteins Lipoproteins (high density) Lipoproteins (low density) Lipoproteins (very low density) Low density lipoprotein Low density lipoproteins Macrophages Macrophages - metabolism Male Medical research Medicine and Health Sciences Metabolism Mice Mice, Knockout Mustard Gas Mutation Peritoneum Plaque, Atherosclerotic - genetics Plaque, Atherosclerotic - metabolism Plaque, Atherosclerotic - pathology Protein binding Proteins Receptors, LDL - deficiency Receptors, LDL - genetics Receptors, Steroid - deficiency Receptors, Steroid - genetics Rodents Serum levels Stem cell transplantation Sterols Time Factors Trends Triglycerides - blood Tumor necrosis factor-α Veins & arteries |
title | Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orp8%20deficiency%20in%20bone%20marrow-derived%20cells%20reduces%20atherosclerotic%20lesion%20progression%20in%20LDL%20receptor%20knockout%20mice&rft.jtitle=PloS%20one&rft.au=van%20Kampen,%20Erik&rft.date=2014-10-27&rft.volume=9&rft.issue=10&rft.spage=e109024&rft.pages=e109024-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0109024&rft_dat=%3Cgale_plos_%3EA417676914%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1617220134&rft_id=info:pmid/25347070&rft_galeid=A417676914&rft_doaj_id=oai_doaj_org_article_2121587ad62b451485dd65b5d379df5e&rfr_iscdi=true |