SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues
Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to gu...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-10, Vol.9 (10), p.e110031-e110031 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e110031 |
---|---|
container_issue | 10 |
container_start_page | e110031 |
container_title | PloS one |
container_volume | 9 |
creator | Tang, Xia Wadsworth, William G |
description | Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions. |
doi_str_mv | 10.1371/journal.pone.0110031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1612298342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e7ae1e1e528d40368b3fa250fc5a18ee</doaj_id><sourcerecordid>3462196641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-642f5d21c5d09dc194ae2363166eb74d6940a11521c561580c81d0254727925f3</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-bB9mzc3XzLwIZfwqFAW14FvIJnfWLLOTNZkp9d-b7U5LK5KHhJtzzr3ncoriJdAl8ArebsIUB9Mvd2HAJQWglMOj4hgazkrFKH98731UPEtpQ6nktVJPiyMmOeeNqI-Lq-9nP0tOFt_CKpwSMzhy-aUtBSWL9217SiKup96MSAxxPqIdfcg9ycqbRLoQibkOA1lP3pnBIvFDJqQ8UEIyBrKd-tHveiR4PUZjse-zViR2wvS8eNKZPuGL-T4pLj9--NF-Li--fjpvzy5KK5kaSyVYJx0DKx1tnIVGGGRccVAKV5VwqhHUAMg9QoGsqa3BUSZFxaqGyY6fFK8Purs-JD2vLGlQwFhTc8Ey4vyAcMFs9C76rYl_dDBe3xRCXGsTR2971FgZhHwkq52gXNUr3hkmaWelgRoxa72bu02rLTqLQ_bdPxB9-DP4X3odrrSApoZGZoHFLBDD77ymUW992i_ODBimm7mVqKqq5hn65h_o_92JA8rGkFLE7m4YoHofo1uW3sdIzzHKtFf3jdyRbnPD_wKPv8NA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612298342</pqid></control><display><type>article</type><title>SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tang, Xia ; Wadsworth, William G</creator><contributor>Labrador, Juan-Pablo</contributor><creatorcontrib>Tang, Xia ; Wadsworth, William G ; Labrador, Juan-Pablo</creatorcontrib><description>Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0110031</identifier><identifier>PMID: 25333948</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Axon guidance ; Axons ; Axons - metabolism ; Bias ; Biology and Life Sciences ; Brownian motion ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins - metabolism ; Cell Adhesion Molecules - metabolism ; Cell Movement - physiology ; Chemotaxis - physiology ; Combinatorial analysis ; Cues ; DCC protein ; Extracellular matrix ; Ligands ; Localization ; Mutation ; Nematodes ; Nerve Tissue Proteins - metabolism ; Neurons ; Neurons - metabolism ; Perlecan ; Probability ; Probability distribution ; Proteins ; Random walk ; Receptors ; Receptors, Immunologic - metabolism ; Roundabout Proteins ; Signal Transduction - physiology ; Slit protein ; Stochastic models ; Wnt protein ; Worms</subject><ispartof>PloS one, 2014-10, Vol.9 (10), p.e110031-e110031</ispartof><rights>2014 Tang, Wadsworth. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Tang, Wadsworth 2014 Tang, Wadsworth</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-642f5d21c5d09dc194ae2363166eb74d6940a11521c561580c81d0254727925f3</citedby><cites>FETCH-LOGICAL-c526t-642f5d21c5d09dc194ae2363166eb74d6940a11521c561580c81d0254727925f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198195/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198195/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25333948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Labrador, Juan-Pablo</contributor><creatorcontrib>Tang, Xia</creatorcontrib><creatorcontrib>Wadsworth, William G</creatorcontrib><title>SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.</description><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Brownian motion</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Movement - physiology</subject><subject>Chemotaxis - physiology</subject><subject>Combinatorial analysis</subject><subject>Cues</subject><subject>DCC protein</subject><subject>Extracellular matrix</subject><subject>Ligands</subject><subject>Localization</subject><subject>Mutation</subject><subject>Nematodes</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Perlecan</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Proteins</subject><subject>Random walk</subject><subject>Receptors</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Roundabout Proteins</subject><subject>Signal Transduction - physiology</subject><subject>Slit protein</subject><subject>Stochastic models</subject><subject>Wnt protein</subject><subject>Worms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-bB9mzc3XzLwIZfwqFAW14FvIJnfWLLOTNZkp9d-b7U5LK5KHhJtzzr3ncoriJdAl8ArebsIUB9Mvd2HAJQWglMOj4hgazkrFKH98731UPEtpQ6nktVJPiyMmOeeNqI-Lq-9nP0tOFt_CKpwSMzhy-aUtBSWL9217SiKup96MSAxxPqIdfcg9ycqbRLoQibkOA1lP3pnBIvFDJqQ8UEIyBrKd-tHveiR4PUZjse-zViR2wvS8eNKZPuGL-T4pLj9--NF-Li--fjpvzy5KK5kaSyVYJx0DKx1tnIVGGGRccVAKV5VwqhHUAMg9QoGsqa3BUSZFxaqGyY6fFK8Purs-JD2vLGlQwFhTc8Ey4vyAcMFs9C76rYl_dDBe3xRCXGsTR2971FgZhHwkq52gXNUr3hkmaWelgRoxa72bu02rLTqLQ_bdPxB9-DP4X3odrrSApoZGZoHFLBDD77ymUW992i_ODBimm7mVqKqq5hn65h_o_92JA8rGkFLE7m4YoHofo1uW3sdIzzHKtFf3jdyRbnPD_wKPv8NA</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>Tang, Xia</creator><creator>Wadsworth, William G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141015</creationdate><title>SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues</title><author>Tang, Xia ; Wadsworth, William G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-642f5d21c5d09dc194ae2363166eb74d6940a11521c561580c81d0254727925f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Brownian motion</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Movement - physiology</topic><topic>Chemotaxis - physiology</topic><topic>Combinatorial analysis</topic><topic>Cues</topic><topic>DCC protein</topic><topic>Extracellular matrix</topic><topic>Ligands</topic><topic>Localization</topic><topic>Mutation</topic><topic>Nematodes</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Perlecan</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Proteins</topic><topic>Random walk</topic><topic>Receptors</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Roundabout Proteins</topic><topic>Signal Transduction - physiology</topic><topic>Slit protein</topic><topic>Stochastic models</topic><topic>Wnt protein</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xia</creatorcontrib><creatorcontrib>Wadsworth, William G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xia</au><au>Wadsworth, William G</au><au>Labrador, Juan-Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-10-15</date><risdate>2014</risdate><volume>9</volume><issue>10</issue><spage>e110031</spage><epage>e110031</epage><pages>e110031-e110031</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25333948</pmid><doi>10.1371/journal.pone.0110031</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-10, Vol.9 (10), p.e110031-e110031 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1612298342 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Axon guidance Axons Axons - metabolism Bias Biology and Life Sciences Brownian motion Caenorhabditis elegans Caenorhabditis elegans Proteins - metabolism Cell Adhesion Molecules - metabolism Cell Movement - physiology Chemotaxis - physiology Combinatorial analysis Cues DCC protein Extracellular matrix Ligands Localization Mutation Nematodes Nerve Tissue Proteins - metabolism Neurons Neurons - metabolism Perlecan Probability Probability distribution Proteins Random walk Receptors Receptors, Immunologic - metabolism Roundabout Proteins Signal Transduction - physiology Slit protein Stochastic models Wnt protein Worms |
title | SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAX-3%20(Robo)%20and%20UNC-40%20(DCC)%20regulate%20a%20directional%20bias%20for%20axon%20guidance%20in%20response%20to%20multiple%20extracellular%20cues&rft.jtitle=PloS%20one&rft.au=Tang,%20Xia&rft.date=2014-10-15&rft.volume=9&rft.issue=10&rft.spage=e110031&rft.epage=e110031&rft.pages=e110031-e110031&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0110031&rft_dat=%3Cproquest_plos_%3E3462196641%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612298342&rft_id=info:pmid/25333948&rft_doaj_id=oai_doaj_org_article_e7ae1e1e528d40368b3fa250fc5a18ee&rfr_iscdi=true |