The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba
Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-10, Vol.9 (10), p.e110367-e110367 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e110367 |
---|---|
container_issue | 10 |
container_start_page | e110367 |
container_title | PloS one |
container_volume | 9 |
creator | Bellini, Nicola Cox, Martin J Harper, Danielle J Stott, Sebastian R Ashok, Praveen C Dholakia, Kishan Kawaguchi, So King, Robert Horton, Tammy Brown, Christian T A |
description | Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3. |
doi_str_mv | 10.1371/journal.pone.0110367 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1610992914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418553328</galeid><doaj_id>oai_doaj_org_article_4198aa0c86f94c2e8cf5c92e2949e3cf</doaj_id><sourcerecordid>A418553328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4c28f70e7691afe15adace22fd621e3e843c2e983de22cb86d80461f62c8f0ce3</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3nn6H4gWBNGHXfOj7SYvwnKcunBwoKevIZtO2pzZpiaNuP-96W3v2Mo9SB6STD7zncwkk2UvMVpiusIfblz0nbTL3nWwRBgjWq0eZaeYU7KoCKKPj9Yn2bMQbhAqKauqp9kJKSlGJeOn2f66hVz2vTVKDsZ1udO564e0s7lyLXjoFOSD27nGy77dp2VudrKBPMRtiF7L8diEEJNl8FEN0cMosu4G6VUSyn96Y21-EftWxmBkcuzBb-Xz7ImWNsCLaT7Lvn-6uD7_sri8-rw5X18uVMXJsCgUYXqFYFVxLDXgUtYpJCG6rggGCqygigBntE5GtWVVzVBRYV0RxTRSQM-y1wfd3rogpqoFgSuMOCccF4nYHIjayRvR-5Sf3wsnjbg1ON8I6VMmFkSBOZMSKVZpnm4GTOlScQKEFxyo0knr4xQtbndQK-gGL-1MdH7SmVY07veoXK7IKgm8mwS8-xUhDGJnggJrZQcu3t6bEI4KxhL65h_04ewmqpEpAdNpl-KqUVSsC8zKklIyai0foNKoYWdU-mLaJPvM4f3MITED_Bma9MZBbL59_X_26secfXvEtiDt0AZn4_g5wxwsDqDyLgQP-r7IGImxQ-6qIcYOEVOHJLdXxw9073TXEvQvPZ4ODA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610992914</pqid></control><display><type>article</type><title>The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bellini, Nicola ; Cox, Martin J ; Harper, Danielle J ; Stott, Sebastian R ; Ashok, Praveen C ; Dholakia, Kishan ; Kawaguchi, So ; King, Robert ; Horton, Tammy ; Brown, Christian T A</creator><creatorcontrib>Bellini, Nicola ; Cox, Martin J ; Harper, Danielle J ; Stott, Sebastian R ; Ashok, Praveen C ; Dholakia, Kishan ; Kawaguchi, So ; King, Robert ; Horton, Tammy ; Brown, Christian T A</creatorcontrib><description>Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0110367</identifier><identifier>PMID: 25310589</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Aquaria ; Aquariums ; Astronomy ; Biology and Life Sciences ; Crustaceans ; Data processing ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental changes ; Euphausia superba ; Euphausiacea ; Euphausiacea - anatomy & histology ; Exoskeleton ; Exoskeletons ; Food chains ; Image resolution ; Imaging, Three-Dimensional ; Krill ; Light emitting diodes ; Marine biology ; Marine ecosystems ; Medical imaging ; Observation techniques ; Oceanography ; Oceans ; Optical Coherence Tomography ; Optics ; Physical Sciences ; Physics ; Polar environments ; Predictive control ; Tomography ; Tomography, Optical Coherence - methods ; Ultrasonic imaging</subject><ispartof>PloS one, 2014-10, Vol.9 (10), p.e110367-e110367</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Bellini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Bellini et al 2014 Bellini et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4c28f70e7691afe15adace22fd621e3e843c2e983de22cb86d80461f62c8f0ce3</citedby><cites>FETCH-LOGICAL-c692t-4c28f70e7691afe15adace22fd621e3e843c2e983de22cb86d80461f62c8f0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25310589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellini, Nicola</creatorcontrib><creatorcontrib>Cox, Martin J</creatorcontrib><creatorcontrib>Harper, Danielle J</creatorcontrib><creatorcontrib>Stott, Sebastian R</creatorcontrib><creatorcontrib>Ashok, Praveen C</creatorcontrib><creatorcontrib>Dholakia, Kishan</creatorcontrib><creatorcontrib>Kawaguchi, So</creatorcontrib><creatorcontrib>King, Robert</creatorcontrib><creatorcontrib>Horton, Tammy</creatorcontrib><creatorcontrib>Brown, Christian T A</creatorcontrib><title>The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3.</description><subject>Animals</subject><subject>Aquaria</subject><subject>Aquariums</subject><subject>Astronomy</subject><subject>Biology and Life Sciences</subject><subject>Crustaceans</subject><subject>Data processing</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental changes</subject><subject>Euphausia superba</subject><subject>Euphausiacea</subject><subject>Euphausiacea - anatomy & histology</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Food chains</subject><subject>Image resolution</subject><subject>Imaging, Three-Dimensional</subject><subject>Krill</subject><subject>Light emitting diodes</subject><subject>Marine biology</subject><subject>Marine ecosystems</subject><subject>Medical imaging</subject><subject>Observation techniques</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Optical Coherence Tomography</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polar environments</subject><subject>Predictive control</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Ultrasonic imaging</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3nn6H4gWBNGHXfOj7SYvwnKcunBwoKevIZtO2pzZpiaNuP-96W3v2Mo9SB6STD7zncwkk2UvMVpiusIfblz0nbTL3nWwRBgjWq0eZaeYU7KoCKKPj9Yn2bMQbhAqKauqp9kJKSlGJeOn2f66hVz2vTVKDsZ1udO564e0s7lyLXjoFOSD27nGy77dp2VudrKBPMRtiF7L8diEEJNl8FEN0cMosu4G6VUSyn96Y21-EftWxmBkcuzBb-Xz7ImWNsCLaT7Lvn-6uD7_sri8-rw5X18uVMXJsCgUYXqFYFVxLDXgUtYpJCG6rggGCqygigBntE5GtWVVzVBRYV0RxTRSQM-y1wfd3rogpqoFgSuMOCccF4nYHIjayRvR-5Sf3wsnjbg1ON8I6VMmFkSBOZMSKVZpnm4GTOlScQKEFxyo0knr4xQtbndQK-gGL-1MdH7SmVY07veoXK7IKgm8mwS8-xUhDGJnggJrZQcu3t6bEI4KxhL65h_04ewmqpEpAdNpl-KqUVSsC8zKklIyai0foNKoYWdU-mLaJPvM4f3MITED_Bma9MZBbL59_X_26secfXvEtiDt0AZn4_g5wxwsDqDyLgQP-r7IGImxQ-6qIcYOEVOHJLdXxw9073TXEvQvPZ4ODA</recordid><startdate>20141013</startdate><enddate>20141013</enddate><creator>Bellini, Nicola</creator><creator>Cox, Martin J</creator><creator>Harper, Danielle J</creator><creator>Stott, Sebastian R</creator><creator>Ashok, Praveen C</creator><creator>Dholakia, Kishan</creator><creator>Kawaguchi, So</creator><creator>King, Robert</creator><creator>Horton, Tammy</creator><creator>Brown, Christian T A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141013</creationdate><title>The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba</title><author>Bellini, Nicola ; Cox, Martin J ; Harper, Danielle J ; Stott, Sebastian R ; Ashok, Praveen C ; Dholakia, Kishan ; Kawaguchi, So ; King, Robert ; Horton, Tammy ; Brown, Christian T A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4c28f70e7691afe15adace22fd621e3e843c2e983de22cb86d80461f62c8f0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Aquaria</topic><topic>Aquariums</topic><topic>Astronomy</topic><topic>Biology and Life Sciences</topic><topic>Crustaceans</topic><topic>Data processing</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental changes</topic><topic>Euphausia superba</topic><topic>Euphausiacea</topic><topic>Euphausiacea - anatomy & histology</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Food chains</topic><topic>Image resolution</topic><topic>Imaging, Three-Dimensional</topic><topic>Krill</topic><topic>Light emitting diodes</topic><topic>Marine biology</topic><topic>Marine ecosystems</topic><topic>Medical imaging</topic><topic>Observation techniques</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Optical Coherence Tomography</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polar environments</topic><topic>Predictive control</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellini, Nicola</creatorcontrib><creatorcontrib>Cox, Martin J</creatorcontrib><creatorcontrib>Harper, Danielle J</creatorcontrib><creatorcontrib>Stott, Sebastian R</creatorcontrib><creatorcontrib>Ashok, Praveen C</creatorcontrib><creatorcontrib>Dholakia, Kishan</creatorcontrib><creatorcontrib>Kawaguchi, So</creatorcontrib><creatorcontrib>King, Robert</creatorcontrib><creatorcontrib>Horton, Tammy</creatorcontrib><creatorcontrib>Brown, Christian T A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellini, Nicola</au><au>Cox, Martin J</au><au>Harper, Danielle J</au><au>Stott, Sebastian R</au><au>Ashok, Praveen C</au><au>Dholakia, Kishan</au><au>Kawaguchi, So</au><au>King, Robert</au><au>Horton, Tammy</au><au>Brown, Christian T A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-10-13</date><risdate>2014</risdate><volume>9</volume><issue>10</issue><spage>e110367</spage><epage>e110367</epage><pages>e110367-e110367</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25310589</pmid><doi>10.1371/journal.pone.0110367</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-10, Vol.9 (10), p.e110367-e110367 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1610992914 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Aquaria Aquariums Astronomy Biology and Life Sciences Crustaceans Data processing Earth Sciences Ecology and Environmental Sciences Environmental changes Euphausia superba Euphausiacea Euphausiacea - anatomy & histology Exoskeleton Exoskeletons Food chains Image resolution Imaging, Three-Dimensional Krill Light emitting diodes Marine biology Marine ecosystems Medical imaging Observation techniques Oceanography Oceans Optical Coherence Tomography Optics Physical Sciences Physics Polar environments Predictive control Tomography Tomography, Optical Coherence - methods Ultrasonic imaging |
title | The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20optical%20coherence%20tomography%20to%20image%20subsurface%20tissue%20structure%20of%20Antarctic%20krill%20Euphausia%20superba&rft.jtitle=PloS%20one&rft.au=Bellini,%20Nicola&rft.date=2014-10-13&rft.volume=9&rft.issue=10&rft.spage=e110367&rft.epage=e110367&rft.pages=e110367-e110367&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0110367&rft_dat=%3Cgale_plos_%3EA418553328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610992914&rft_id=info:pmid/25310589&rft_galeid=A418553328&rft_doaj_id=oai_doaj_org_article_4198aa0c86f94c2e8cf5c92e2949e3cf&rfr_iscdi=true |