Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectro...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-09, Vol.9 (9), p.e106802 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e106802 |
container_title | PloS one |
container_volume | 9 |
creator | Mehrali, Mehdi Moghaddam, Ehsan Seyed Shirazi, Seyed Farid Baradaran, Saeid Mehrali, Mohammad Latibari, Sara Tahan Metselaar, Hendrik Simon Cornelis Kadri, Nahrizul Adib Zandi, Keivan Osman, Noor Azuan Abu |
description | Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix. |
doi_str_mv | 10.1371/journal.pone.0106802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1562653805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1a8be865a6a42449069e6f8be2d6d51</doaj_id><sourcerecordid>3435323701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</originalsourceid><addsrcrecordid>eNp1UsFq3DAUFKWhSbb9g9IKet6NJMuydSmU0DaBlFzSs3iWn3e1yJIreQP9-ypZJySHnvQYzcx7DEPIR842vGr4xT4eUgC_mWLADeNMtUy8IWdcV2KtBKvevphPyXnOe8bqqlXqHTkVtRC6luyMhF9odxCcBU8h9NQFeu_mFGnnoo_bR3zCNMQ0QrBI40C3CaYdBqQBQpw8zOhxzjShC4VmsadFZN1hpNn5YjAjtXGcYnYzvicnA_iMH5Z3RX7_-H53ebW-uf15ffntZm1roeY11xKRi1YwrmvQAB3wTnZay0ZWqtNtB02ZhW5Fp_reqoY3VaNFy_qatUJVK_L56Dv5mM0SVTa8VkKVEEoQK3J9ZPQR9mZKboT010Rw5hGIaWsgzc56NAOHtsNW1aBACik1UxrVUDDRq77mxevrsu3QjdhbDHMC_8r09U9wO7ON90Zy1TRMFIMvi0GKfw6Y5_-cLI8sm2LOCYfnDZyZh048qcxDJ8zSiSL79PK6Z9FTCap_JIC2hw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562653805</pqid></control><display><type>article</type><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</creator><creatorcontrib>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</creatorcontrib><description>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106802</identifier><identifier>PMID: 25229540</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion tests ; Apatite ; Biocompatibility ; Biocompatible Materials - chemistry ; Biology and Life Sciences ; Biomedical engineering ; Biomedical materials ; Body fluids ; Calcium ; Calcium Compounds - chemistry ; Calcium silicates ; Carbon ; Cell adhesion & migration ; Cell proliferation ; Composite materials ; Conditioned stimulus ; Crack bridging ; Crack propagation ; Densification ; Electron microscopy ; Engineering and Technology ; Fracture toughness ; Fractures ; Grain size ; Graphene ; Graphite - chemistry ; Hip ; Hot isostatic pressing ; Hot pressing ; Hydroxyapatite ; In vitro methods and tests ; Isostatic pressing ; Mechanical engineering ; Microstructural analysis ; Mineralization ; Nanocomposites ; Nanocomposites - chemistry ; Particle size ; pH effects ; Plasma sintering ; Process parameters ; Raman spectroscopy ; Scanning electron microscopy ; Silicates - chemistry ; Silicon nitride ; Spectroscopy ; Studies ; Surgical implants ; Tissue engineering</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e106802</ispartof><rights>2014 Mehrali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Mehrali et al 2014 Mehrali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</citedby><cites>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167702/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167702/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25229540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrali, Mehdi</creatorcontrib><creatorcontrib>Moghaddam, Ehsan</creatorcontrib><creatorcontrib>Seyed Shirazi, Seyed Farid</creatorcontrib><creatorcontrib>Baradaran, Saeid</creatorcontrib><creatorcontrib>Mehrali, Mohammad</creatorcontrib><creatorcontrib>Latibari, Sara Tahan</creatorcontrib><creatorcontrib>Metselaar, Hendrik Simon Cornelis</creatorcontrib><creatorcontrib>Kadri, Nahrizul Adib</creatorcontrib><creatorcontrib>Zandi, Keivan</creatorcontrib><creatorcontrib>Osman, Noor Azuan Abu</creatorcontrib><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</description><subject>Adhesion tests</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Calcium</subject><subject>Calcium Compounds - chemistry</subject><subject>Calcium silicates</subject><subject>Carbon</subject><subject>Cell adhesion & migration</subject><subject>Cell proliferation</subject><subject>Composite materials</subject><subject>Conditioned stimulus</subject><subject>Crack bridging</subject><subject>Crack propagation</subject><subject>Densification</subject><subject>Electron microscopy</subject><subject>Engineering and Technology</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Grain size</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hip</subject><subject>Hot isostatic pressing</subject><subject>Hot pressing</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Isostatic pressing</subject><subject>Mechanical engineering</subject><subject>Microstructural analysis</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Particle size</subject><subject>pH effects</subject><subject>Plasma sintering</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Silicates - chemistry</subject><subject>Silicon nitride</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UsFq3DAUFKWhSbb9g9IKet6NJMuydSmU0DaBlFzSs3iWn3e1yJIreQP9-ypZJySHnvQYzcx7DEPIR842vGr4xT4eUgC_mWLADeNMtUy8IWdcV2KtBKvevphPyXnOe8bqqlXqHTkVtRC6luyMhF9odxCcBU8h9NQFeu_mFGnnoo_bR3zCNMQ0QrBI40C3CaYdBqQBQpw8zOhxzjShC4VmsadFZN1hpNn5YjAjtXGcYnYzvicnA_iMH5Z3RX7_-H53ebW-uf15ffntZm1roeY11xKRi1YwrmvQAB3wTnZay0ZWqtNtB02ZhW5Fp_reqoY3VaNFy_qatUJVK_L56Dv5mM0SVTa8VkKVEEoQK3J9ZPQR9mZKboT010Rw5hGIaWsgzc56NAOHtsNW1aBACik1UxrVUDDRq77mxevrsu3QjdhbDHMC_8r09U9wO7ON90Zy1TRMFIMvi0GKfw6Y5_-cLI8sm2LOCYfnDZyZh048qcxDJ8zSiSL79PK6Z9FTCap_JIC2hw</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>Mehrali, Mehdi</creator><creator>Moghaddam, Ehsan</creator><creator>Seyed Shirazi, Seyed Farid</creator><creator>Baradaran, Saeid</creator><creator>Mehrali, Mohammad</creator><creator>Latibari, Sara Tahan</creator><creator>Metselaar, Hendrik Simon Cornelis</creator><creator>Kadri, Nahrizul Adib</creator><creator>Zandi, Keivan</creator><creator>Osman, Noor Azuan Abu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140917</creationdate><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><author>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion tests</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Calcium</topic><topic>Calcium Compounds - chemistry</topic><topic>Calcium silicates</topic><topic>Carbon</topic><topic>Cell adhesion & migration</topic><topic>Cell proliferation</topic><topic>Composite materials</topic><topic>Conditioned stimulus</topic><topic>Crack bridging</topic><topic>Crack propagation</topic><topic>Densification</topic><topic>Electron microscopy</topic><topic>Engineering and Technology</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Grain size</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hip</topic><topic>Hot isostatic pressing</topic><topic>Hot pressing</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Isostatic pressing</topic><topic>Mechanical engineering</topic><topic>Microstructural analysis</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Particle size</topic><topic>pH effects</topic><topic>Plasma sintering</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Silicates - chemistry</topic><topic>Silicon nitride</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrali, Mehdi</creatorcontrib><creatorcontrib>Moghaddam, Ehsan</creatorcontrib><creatorcontrib>Seyed Shirazi, Seyed Farid</creatorcontrib><creatorcontrib>Baradaran, Saeid</creatorcontrib><creatorcontrib>Mehrali, Mohammad</creatorcontrib><creatorcontrib>Latibari, Sara Tahan</creatorcontrib><creatorcontrib>Metselaar, Hendrik Simon Cornelis</creatorcontrib><creatorcontrib>Kadri, Nahrizul Adib</creatorcontrib><creatorcontrib>Zandi, Keivan</creatorcontrib><creatorcontrib>Osman, Noor Azuan Abu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrali, Mehdi</au><au>Moghaddam, Ehsan</au><au>Seyed Shirazi, Seyed Farid</au><au>Baradaran, Saeid</au><au>Mehrali, Mohammad</au><au>Latibari, Sara Tahan</au><au>Metselaar, Hendrik Simon Cornelis</au><au>Kadri, Nahrizul Adib</au><au>Zandi, Keivan</au><au>Osman, Noor Azuan Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-17</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e106802</spage><pages>e106802-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25229540</pmid><doi>10.1371/journal.pone.0106802</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-09, Vol.9 (9), p.e106802 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1562653805 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adhesion tests Apatite Biocompatibility Biocompatible Materials - chemistry Biology and Life Sciences Biomedical engineering Biomedical materials Body fluids Calcium Calcium Compounds - chemistry Calcium silicates Carbon Cell adhesion & migration Cell proliferation Composite materials Conditioned stimulus Crack bridging Crack propagation Densification Electron microscopy Engineering and Technology Fracture toughness Fractures Grain size Graphene Graphite - chemistry Hip Hot isostatic pressing Hot pressing Hydroxyapatite In vitro methods and tests Isostatic pressing Mechanical engineering Microstructural analysis Mineralization Nanocomposites Nanocomposites - chemistry Particle size pH effects Plasma sintering Process parameters Raman spectroscopy Scanning electron microscopy Silicates - chemistry Silicon nitride Spectroscopy Studies Surgical implants Tissue engineering |
title | Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20in%20vitro%20biological%20performance%20of%20graphene%20nanoplatelets%20reinforced%20calcium%20silicate%20composite&rft.jtitle=PloS%20one&rft.au=Mehrali,%20Mehdi&rft.date=2014-09-17&rft.volume=9&rft.issue=9&rft.spage=e106802&rft.pages=e106802-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106802&rft_dat=%3Cproquest_plos_%3E3435323701%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562653805&rft_id=info:pmid/25229540&rft_doaj_id=oai_doaj_org_article_f1a8be865a6a42449069e6f8be2d6d51&rfr_iscdi=true |