Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite

Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-09, Vol.9 (9), p.e106802
Hauptverfasser: Mehrali, Mehdi, Moghaddam, Ehsan, Seyed Shirazi, Seyed Farid, Baradaran, Saeid, Mehrali, Mohammad, Latibari, Sara Tahan, Metselaar, Hendrik Simon Cornelis, Kadri, Nahrizul Adib, Zandi, Keivan, Osman, Noor Azuan Abu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e106802
container_title PloS one
container_volume 9
creator Mehrali, Mehdi
Moghaddam, Ehsan
Seyed Shirazi, Seyed Farid
Baradaran, Saeid
Mehrali, Mohammad
Latibari, Sara Tahan
Metselaar, Hendrik Simon Cornelis
Kadri, Nahrizul Adib
Zandi, Keivan
Osman, Noor Azuan Abu
description Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
doi_str_mv 10.1371/journal.pone.0106802
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1562653805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1a8be865a6a42449069e6f8be2d6d51</doaj_id><sourcerecordid>3435323701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</originalsourceid><addsrcrecordid>eNp1UsFq3DAUFKWhSbb9g9IKet6NJMuydSmU0DaBlFzSs3iWn3e1yJIreQP9-ypZJySHnvQYzcx7DEPIR842vGr4xT4eUgC_mWLADeNMtUy8IWdcV2KtBKvevphPyXnOe8bqqlXqHTkVtRC6luyMhF9odxCcBU8h9NQFeu_mFGnnoo_bR3zCNMQ0QrBI40C3CaYdBqQBQpw8zOhxzjShC4VmsadFZN1hpNn5YjAjtXGcYnYzvicnA_iMH5Z3RX7_-H53ebW-uf15ffntZm1roeY11xKRi1YwrmvQAB3wTnZay0ZWqtNtB02ZhW5Fp_reqoY3VaNFy_qatUJVK_L56Dv5mM0SVTa8VkKVEEoQK3J9ZPQR9mZKboT010Rw5hGIaWsgzc56NAOHtsNW1aBACik1UxrVUDDRq77mxevrsu3QjdhbDHMC_8r09U9wO7ON90Zy1TRMFIMvi0GKfw6Y5_-cLI8sm2LOCYfnDZyZh048qcxDJ8zSiSL79PK6Z9FTCap_JIC2hw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562653805</pqid></control><display><type>article</type><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</creator><creatorcontrib>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</creatorcontrib><description>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106802</identifier><identifier>PMID: 25229540</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion tests ; Apatite ; Biocompatibility ; Biocompatible Materials - chemistry ; Biology and Life Sciences ; Biomedical engineering ; Biomedical materials ; Body fluids ; Calcium ; Calcium Compounds - chemistry ; Calcium silicates ; Carbon ; Cell adhesion &amp; migration ; Cell proliferation ; Composite materials ; Conditioned stimulus ; Crack bridging ; Crack propagation ; Densification ; Electron microscopy ; Engineering and Technology ; Fracture toughness ; Fractures ; Grain size ; Graphene ; Graphite - chemistry ; Hip ; Hot isostatic pressing ; Hot pressing ; Hydroxyapatite ; In vitro methods and tests ; Isostatic pressing ; Mechanical engineering ; Microstructural analysis ; Mineralization ; Nanocomposites ; Nanocomposites - chemistry ; Particle size ; pH effects ; Plasma sintering ; Process parameters ; Raman spectroscopy ; Scanning electron microscopy ; Silicates - chemistry ; Silicon nitride ; Spectroscopy ; Studies ; Surgical implants ; Tissue engineering</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e106802</ispartof><rights>2014 Mehrali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Mehrali et al 2014 Mehrali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</citedby><cites>FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167702/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167702/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25229540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrali, Mehdi</creatorcontrib><creatorcontrib>Moghaddam, Ehsan</creatorcontrib><creatorcontrib>Seyed Shirazi, Seyed Farid</creatorcontrib><creatorcontrib>Baradaran, Saeid</creatorcontrib><creatorcontrib>Mehrali, Mohammad</creatorcontrib><creatorcontrib>Latibari, Sara Tahan</creatorcontrib><creatorcontrib>Metselaar, Hendrik Simon Cornelis</creatorcontrib><creatorcontrib>Kadri, Nahrizul Adib</creatorcontrib><creatorcontrib>Zandi, Keivan</creatorcontrib><creatorcontrib>Osman, Noor Azuan Abu</creatorcontrib><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</description><subject>Adhesion tests</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Calcium</subject><subject>Calcium Compounds - chemistry</subject><subject>Calcium silicates</subject><subject>Carbon</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell proliferation</subject><subject>Composite materials</subject><subject>Conditioned stimulus</subject><subject>Crack bridging</subject><subject>Crack propagation</subject><subject>Densification</subject><subject>Electron microscopy</subject><subject>Engineering and Technology</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Grain size</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hip</subject><subject>Hot isostatic pressing</subject><subject>Hot pressing</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Isostatic pressing</subject><subject>Mechanical engineering</subject><subject>Microstructural analysis</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Particle size</subject><subject>pH effects</subject><subject>Plasma sintering</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Silicates - chemistry</subject><subject>Silicon nitride</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UsFq3DAUFKWhSbb9g9IKet6NJMuydSmU0DaBlFzSs3iWn3e1yJIreQP9-ypZJySHnvQYzcx7DEPIR842vGr4xT4eUgC_mWLADeNMtUy8IWdcV2KtBKvevphPyXnOe8bqqlXqHTkVtRC6luyMhF9odxCcBU8h9NQFeu_mFGnnoo_bR3zCNMQ0QrBI40C3CaYdBqQBQpw8zOhxzjShC4VmsadFZN1hpNn5YjAjtXGcYnYzvicnA_iMH5Z3RX7_-H53ebW-uf15ffntZm1roeY11xKRi1YwrmvQAB3wTnZay0ZWqtNtB02ZhW5Fp_reqoY3VaNFy_qatUJVK_L56Dv5mM0SVTa8VkKVEEoQK3J9ZPQR9mZKboT010Rw5hGIaWsgzc56NAOHtsNW1aBACik1UxrVUDDRq77mxevrsu3QjdhbDHMC_8r09U9wO7ON90Zy1TRMFIMvi0GKfw6Y5_-cLI8sm2LOCYfnDZyZh048qcxDJ8zSiSL79PK6Z9FTCap_JIC2hw</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>Mehrali, Mehdi</creator><creator>Moghaddam, Ehsan</creator><creator>Seyed Shirazi, Seyed Farid</creator><creator>Baradaran, Saeid</creator><creator>Mehrali, Mohammad</creator><creator>Latibari, Sara Tahan</creator><creator>Metselaar, Hendrik Simon Cornelis</creator><creator>Kadri, Nahrizul Adib</creator><creator>Zandi, Keivan</creator><creator>Osman, Noor Azuan Abu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140917</creationdate><title>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</title><author>Mehrali, Mehdi ; Moghaddam, Ehsan ; Seyed Shirazi, Seyed Farid ; Baradaran, Saeid ; Mehrali, Mohammad ; Latibari, Sara Tahan ; Metselaar, Hendrik Simon Cornelis ; Kadri, Nahrizul Adib ; Zandi, Keivan ; Osman, Noor Azuan Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-194ee12820195a9aaba1b4b9947436b98ba79472982b6ddc6717379280d508263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion tests</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Calcium</topic><topic>Calcium Compounds - chemistry</topic><topic>Calcium silicates</topic><topic>Carbon</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell proliferation</topic><topic>Composite materials</topic><topic>Conditioned stimulus</topic><topic>Crack bridging</topic><topic>Crack propagation</topic><topic>Densification</topic><topic>Electron microscopy</topic><topic>Engineering and Technology</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Grain size</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hip</topic><topic>Hot isostatic pressing</topic><topic>Hot pressing</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Isostatic pressing</topic><topic>Mechanical engineering</topic><topic>Microstructural analysis</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Particle size</topic><topic>pH effects</topic><topic>Plasma sintering</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Silicates - chemistry</topic><topic>Silicon nitride</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrali, Mehdi</creatorcontrib><creatorcontrib>Moghaddam, Ehsan</creatorcontrib><creatorcontrib>Seyed Shirazi, Seyed Farid</creatorcontrib><creatorcontrib>Baradaran, Saeid</creatorcontrib><creatorcontrib>Mehrali, Mohammad</creatorcontrib><creatorcontrib>Latibari, Sara Tahan</creatorcontrib><creatorcontrib>Metselaar, Hendrik Simon Cornelis</creatorcontrib><creatorcontrib>Kadri, Nahrizul Adib</creatorcontrib><creatorcontrib>Zandi, Keivan</creatorcontrib><creatorcontrib>Osman, Noor Azuan Abu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrali, Mehdi</au><au>Moghaddam, Ehsan</au><au>Seyed Shirazi, Seyed Farid</au><au>Baradaran, Saeid</au><au>Mehrali, Mohammad</au><au>Latibari, Sara Tahan</au><au>Metselaar, Hendrik Simon Cornelis</au><au>Kadri, Nahrizul Adib</au><au>Zandi, Keivan</au><au>Osman, Noor Azuan Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-17</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e106802</spage><pages>e106802-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25229540</pmid><doi>10.1371/journal.pone.0106802</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-09, Vol.9 (9), p.e106802
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1562653805
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adhesion tests
Apatite
Biocompatibility
Biocompatible Materials - chemistry
Biology and Life Sciences
Biomedical engineering
Biomedical materials
Body fluids
Calcium
Calcium Compounds - chemistry
Calcium silicates
Carbon
Cell adhesion & migration
Cell proliferation
Composite materials
Conditioned stimulus
Crack bridging
Crack propagation
Densification
Electron microscopy
Engineering and Technology
Fracture toughness
Fractures
Grain size
Graphene
Graphite - chemistry
Hip
Hot isostatic pressing
Hot pressing
Hydroxyapatite
In vitro methods and tests
Isostatic pressing
Mechanical engineering
Microstructural analysis
Mineralization
Nanocomposites
Nanocomposites - chemistry
Particle size
pH effects
Plasma sintering
Process parameters
Raman spectroscopy
Scanning electron microscopy
Silicates - chemistry
Silicon nitride
Spectroscopy
Studies
Surgical implants
Tissue engineering
title Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20in%20vitro%20biological%20performance%20of%20graphene%20nanoplatelets%20reinforced%20calcium%20silicate%20composite&rft.jtitle=PloS%20one&rft.au=Mehrali,%20Mehdi&rft.date=2014-09-17&rft.volume=9&rft.issue=9&rft.spage=e106802&rft.pages=e106802-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106802&rft_dat=%3Cproquest_plos_%3E3435323701%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562653805&rft_id=info:pmid/25229540&rft_doaj_id=oai_doaj_org_article_f1a8be865a6a42449069e6f8be2d6d51&rfr_iscdi=true