Quantifying the reconfiguration of intrinsic networks during working memory

Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-09, Vol.9 (9), p.e106636-e106636
Hauptverfasser: Cohen, Jessica R, Gallen, Courtney L, Jacobs, Emily G, Lee, Taraz G, D'Esposito, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e106636
container_issue 9
container_start_page e106636
container_title PloS one
container_volume 9
creator Cohen, Jessica R
Gallen, Courtney L
Jacobs, Emily G
Lee, Taraz G
D'Esposito, Mark
description Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintenance/tonic alertness and adaptive, trial-by-trial updating. Using functional magnetic resonance imaging, we directly tested whether the functional connectivity of the CO and FP networks was related to cognitive demands and behavior. We focused on working memory because of evidence that during working memory tasks the entire brain becomes more integrated. When specifically probing the CO and FP cognitive control networks, we found that individual regions of both intrinsic networks were active during working memory and, as expected, integration across the two networks increased during task blocks that required cognitive control. Crucially, increased integration between each of the cognitive control networks and a task-related, non-cognitive control network (the hand somatosensory-motor network; SM) was related to increased accuracy. This implies that dynamic reconfiguration of the CO and FP networks so as to increase their inter-network communication underlies successful working memory.
doi_str_mv 10.1371/journal.pone.0106636
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1560368664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98260281099b4b70953222a1f783c120</doaj_id><sourcerecordid>3424179441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-ad4e78ef78b73188ad2f4f29fd5e3f6fce1aee6ac2f16c89f4e954a31c9e13973</originalsourceid><addsrcrecordid>eNptUl1rFDEUDaLYuvYfiA744suu-ZpM8iKUYrVYKIJ9DtnMzTbrTLImM8r--2a609JK83Lzcc7JuZeD0DuCV4Q15PM2jimYbrWLAVaYYCGYeIGOiWJ0KShmLx_tj9CbnLcY10wK8Rod0Zoo0mB-jH78HE0YvNv7sKmGG6gS2Bic34zJDD6GKrrKhyH5kL2tAgz_Yvqdq3ZME2E6TLWHPqb9W_TKmS7DyVwX6Pr866-z78vLq28XZ6eXS1srOixNy6GR4Bq5bhiR0rTUcUeVa2tgTjgLxAAIY6kjwkrlOKiaG0asAsJUwxbow0F318Ws5zlkTWqBmSgN8oK4OCDaaLZ6l3xv0l5H4_XdRUwbbdLgbQdaSSowlQQrtebrBquaUUoNKfaYJWV2C_Rl_m1c99BaKNMw3RPRpy_B3-hN_Kt5McSoLAKfZoEU_4yQB937bKHrTIA43vkmmHFW1gJ9_A_6fHf8gLIp5pzAPZghWE_ZuGfpKRt6zkahvX_cyAPpPgzsFv-puH0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560368664</pqid></control><display><type>article</type><title>Quantifying the reconfiguration of intrinsic networks during working memory</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cohen, Jessica R ; Gallen, Courtney L ; Jacobs, Emily G ; Lee, Taraz G ; D'Esposito, Mark</creator><contributor>Stamatakis, Emmanuel Andreas</contributor><creatorcontrib>Cohen, Jessica R ; Gallen, Courtney L ; Jacobs, Emily G ; Lee, Taraz G ; D'Esposito, Mark ; Stamatakis, Emmanuel Andreas</creatorcontrib><description>Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintenance/tonic alertness and adaptive, trial-by-trial updating. Using functional magnetic resonance imaging, we directly tested whether the functional connectivity of the CO and FP networks was related to cognitive demands and behavior. We focused on working memory because of evidence that during working memory tasks the entire brain becomes more integrated. When specifically probing the CO and FP cognitive control networks, we found that individual regions of both intrinsic networks were active during working memory and, as expected, integration across the two networks increased during task blocks that required cognitive control. Crucially, increased integration between each of the cognitive control networks and a task-related, non-cognitive control network (the hand somatosensory-motor network; SM) was related to increased accuracy. This implies that dynamic reconfiguration of the CO and FP networks so as to increase their inter-network communication underlies successful working memory.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106636</identifier><identifier>PMID: 25191704</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive control ; Adolescent ; Adult ; Alertness ; Biology and Life Sciences ; Brain ; Brain - physiology ; Brain Mapping ; Cognition &amp; reasoning ; Cognitive ability ; Female ; Functional magnetic resonance imaging ; Humans ; Integration ; Magnetic resonance ; Magnetic resonance imaging ; Male ; Memory ; Memory tasks ; Memory, Short-Term ; Mental task performance ; Nerve Net ; Networks ; Neural networks ; Neuroimaging ; Neurosciences ; Photic Stimulation ; Reconfiguration ; Research and Analysis Methods ; Short term memory ; Studies ; Womens health ; Young Adult</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e106636-e106636</ispartof><rights>2014 Cohen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Cohen et al 2014 Cohen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-ad4e78ef78b73188ad2f4f29fd5e3f6fce1aee6ac2f16c89f4e954a31c9e13973</citedby><cites>FETCH-LOGICAL-c592t-ad4e78ef78b73188ad2f4f29fd5e3f6fce1aee6ac2f16c89f4e954a31c9e13973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156328/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156328/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25191704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stamatakis, Emmanuel Andreas</contributor><creatorcontrib>Cohen, Jessica R</creatorcontrib><creatorcontrib>Gallen, Courtney L</creatorcontrib><creatorcontrib>Jacobs, Emily G</creatorcontrib><creatorcontrib>Lee, Taraz G</creatorcontrib><creatorcontrib>D'Esposito, Mark</creatorcontrib><title>Quantifying the reconfiguration of intrinsic networks during working memory</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintenance/tonic alertness and adaptive, trial-by-trial updating. Using functional magnetic resonance imaging, we directly tested whether the functional connectivity of the CO and FP networks was related to cognitive demands and behavior. We focused on working memory because of evidence that during working memory tasks the entire brain becomes more integrated. When specifically probing the CO and FP cognitive control networks, we found that individual regions of both intrinsic networks were active during working memory and, as expected, integration across the two networks increased during task blocks that required cognitive control. Crucially, increased integration between each of the cognitive control networks and a task-related, non-cognitive control network (the hand somatosensory-motor network; SM) was related to increased accuracy. This implies that dynamic reconfiguration of the CO and FP networks so as to increase their inter-network communication underlies successful working memory.</description><subject>Adaptive control</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Alertness</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Integration</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Memory</subject><subject>Memory tasks</subject><subject>Memory, Short-Term</subject><subject>Mental task performance</subject><subject>Nerve Net</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Photic Stimulation</subject><subject>Reconfiguration</subject><subject>Research and Analysis Methods</subject><subject>Short term memory</subject><subject>Studies</subject><subject>Womens health</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUDaLYuvYfiA744suu-ZpM8iKUYrVYKIJ9DtnMzTbrTLImM8r--2a609JK83Lzcc7JuZeD0DuCV4Q15PM2jimYbrWLAVaYYCGYeIGOiWJ0KShmLx_tj9CbnLcY10wK8Rod0Zoo0mB-jH78HE0YvNv7sKmGG6gS2Bic34zJDD6GKrrKhyH5kL2tAgz_Yvqdq3ZME2E6TLWHPqb9W_TKmS7DyVwX6Pr866-z78vLq28XZ6eXS1srOixNy6GR4Bq5bhiR0rTUcUeVa2tgTjgLxAAIY6kjwkrlOKiaG0asAsJUwxbow0F318Ws5zlkTWqBmSgN8oK4OCDaaLZ6l3xv0l5H4_XdRUwbbdLgbQdaSSowlQQrtebrBquaUUoNKfaYJWV2C_Rl_m1c99BaKNMw3RPRpy_B3-hN_Kt5McSoLAKfZoEU_4yQB937bKHrTIA43vkmmHFW1gJ9_A_6fHf8gLIp5pzAPZghWE_ZuGfpKRt6zkahvX_cyAPpPgzsFv-puH0</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Cohen, Jessica R</creator><creator>Gallen, Courtney L</creator><creator>Jacobs, Emily G</creator><creator>Lee, Taraz G</creator><creator>D'Esposito, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140905</creationdate><title>Quantifying the reconfiguration of intrinsic networks during working memory</title><author>Cohen, Jessica R ; Gallen, Courtney L ; Jacobs, Emily G ; Lee, Taraz G ; D'Esposito, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-ad4e78ef78b73188ad2f4f29fd5e3f6fce1aee6ac2f16c89f4e954a31c9e13973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive control</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Alertness</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Integration</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Memory</topic><topic>Memory tasks</topic><topic>Memory, Short-Term</topic><topic>Mental task performance</topic><topic>Nerve Net</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Photic Stimulation</topic><topic>Reconfiguration</topic><topic>Research and Analysis Methods</topic><topic>Short term memory</topic><topic>Studies</topic><topic>Womens health</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Jessica R</creatorcontrib><creatorcontrib>Gallen, Courtney L</creatorcontrib><creatorcontrib>Jacobs, Emily G</creatorcontrib><creatorcontrib>Lee, Taraz G</creatorcontrib><creatorcontrib>D'Esposito, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Jessica R</au><au>Gallen, Courtney L</au><au>Jacobs, Emily G</au><au>Lee, Taraz G</au><au>D'Esposito, Mark</au><au>Stamatakis, Emmanuel Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the reconfiguration of intrinsic networks during working memory</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e106636</spage><epage>e106636</epage><pages>e106636-e106636</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintenance/tonic alertness and adaptive, trial-by-trial updating. Using functional magnetic resonance imaging, we directly tested whether the functional connectivity of the CO and FP networks was related to cognitive demands and behavior. We focused on working memory because of evidence that during working memory tasks the entire brain becomes more integrated. When specifically probing the CO and FP cognitive control networks, we found that individual regions of both intrinsic networks were active during working memory and, as expected, integration across the two networks increased during task blocks that required cognitive control. Crucially, increased integration between each of the cognitive control networks and a task-related, non-cognitive control network (the hand somatosensory-motor network; SM) was related to increased accuracy. This implies that dynamic reconfiguration of the CO and FP networks so as to increase their inter-network communication underlies successful working memory.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25191704</pmid><doi>10.1371/journal.pone.0106636</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-09, Vol.9 (9), p.e106636-e106636
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1560368664
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive control
Adolescent
Adult
Alertness
Biology and Life Sciences
Brain
Brain - physiology
Brain Mapping
Cognition & reasoning
Cognitive ability
Female
Functional magnetic resonance imaging
Humans
Integration
Magnetic resonance
Magnetic resonance imaging
Male
Memory
Memory tasks
Memory, Short-Term
Mental task performance
Nerve Net
Networks
Neural networks
Neuroimaging
Neurosciences
Photic Stimulation
Reconfiguration
Research and Analysis Methods
Short term memory
Studies
Womens health
Young Adult
title Quantifying the reconfiguration of intrinsic networks during working memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20reconfiguration%20of%20intrinsic%20networks%20during%20working%20memory&rft.jtitle=PloS%20one&rft.au=Cohen,%20Jessica%20R&rft.date=2014-09-05&rft.volume=9&rft.issue=9&rft.spage=e106636&rft.epage=e106636&rft.pages=e106636-e106636&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106636&rft_dat=%3Cproquest_plos_%3E3424179441%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560368664&rft_id=info:pmid/25191704&rft_doaj_id=oai_doaj_org_article_98260281099b4b70953222a1f783c120&rfr_iscdi=true