Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies

T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-09, Vol.9 (9), p.e106769
Hauptverfasser: Cheng, Guyue, Liu, Changcun, Wang, Xu, Ma, Hongmin, Pan, Yuanhu, Huang, Lingli, Hao, Haihong, Dai, Menghong, Yuan, Zonghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e106769
container_title PloS one
container_volume 9
creator Cheng, Guyue
Liu, Changcun
Wang, Xu
Ma, Hongmin
Pan, Yuanhu
Huang, Lingli
Hao, Haihong
Dai, Menghong
Yuan, Zonghui
description T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2 toxin was docked into a homology model of CYP3A29 based on a crystal structure of CYP3A4 using AutoDock 4.0. Nine residues of CYP3A29, Arg105, Arg106, Phe108, Ser119, Lys212, Phe213, Phe215, Arg372 and Glu374, which were found within 5 Å around T-2 toxin were subjected to site-directed mutagenesis. In the oxidation of nifedipine, the CLint value of R106A was increased by nearly two-folds compared with the wild-type CYP3A29, while the substrate affinities and CLint values of S119A and K212A were significantly reduced. In the hydroxylation of T-2 toxin, the generation of 3'-OH-T-2 by R105A, S119A and K212A was significantly less than that by the wild-type, whereas R106A slightly increased the generation of 3'-OH-T-2. These results were further confirmed by isothermal titration calorimetry analysis, suggesting that these four residues are important in the hydroxylation of T-2 toxin and Arg105 may be a specific recognition site for the toxin. Our study suggests a possible structure-function relationship of CYP3A29 in the hydroxylation of T-2 toxin, providing with new insights into the mechanism of CYP3A enzymes in the biotransformation of T-2 toxin.
doi_str_mv 10.1371/journal.pone.0106769
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1559641498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416975842</galeid><doaj_id>oai_doaj_org_article_bc7751434fdf4262bc99ec3745d71201</doaj_id><sourcerecordid>A416975842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-469ce8956f145a9fe7e0e0abc8531d208b486c3123404cf7de96fb5493f12e113</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHixa75nciMsxY9CoWKrtyGTOdnNOjtZk0zp_gd_tNnutnRBQXKRkDzve8LLOVX1kuApYTV5vwxjHEw_XYcBpphgWUv1qDomitGJpJg9fnA-qp6ltMRYsEbKp9URFaThnPHj6vdljqPNY4SJGwebfRiQKbab5BMKDq1DtH4AZDc52EUMK0BfucCIzahCfkB5AWix6WK42fTmVl1EVxOKcrgpzyahCNdgeuhQu0FdsD_9MC8VOrQas5nDANtCKY-dh_S8euJMn-DFfj-pvn_6eHX6ZXJ-8fnsdHY-sVLRPOFSWWiUkI5wYZSDGjBg09pGMNJR3LS8kZYRyjjm1tUdKOlawRVzhAIh7KR6vfNd9yHpfZBJEyGU5ISrphBnO6ILZqnX0a9M3OhgvL69CHGuTcze9qBbW9eClDBd5ziVtLVKgWU1F11NKN5W-7CvNrYr6CwMOZr-wPTwZfALPQ_XmhPBZIOLwZu9QQy_Rkj5H1_eU_OStvaDC8XMrnyyesaJVLVoOC3U9C9UWR2svC2t5Hy5PxC8OxAUJsNNnpsxJX12-e3_2Ysfh-zbB-yitEhepNCP2x5KhyDfgTaGlCK4--QI1ttJuEtDbydB7yehyF49TP1edNf67A-fQgQR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559641498</pqid></control><display><type>article</type><title>Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Cheng, Guyue ; Liu, Changcun ; Wang, Xu ; Ma, Hongmin ; Pan, Yuanhu ; Huang, Lingli ; Hao, Haihong ; Dai, Menghong ; Yuan, Zonghui</creator><contributor>Porollo, Alexey</contributor><creatorcontrib>Cheng, Guyue ; Liu, Changcun ; Wang, Xu ; Ma, Hongmin ; Pan, Yuanhu ; Huang, Lingli ; Hao, Haihong ; Dai, Menghong ; Yuan, Zonghui ; Porollo, Alexey</creatorcontrib><description>T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2 toxin was docked into a homology model of CYP3A29 based on a crystal structure of CYP3A4 using AutoDock 4.0. Nine residues of CYP3A29, Arg105, Arg106, Phe108, Ser119, Lys212, Phe213, Phe215, Arg372 and Glu374, which were found within 5 Å around T-2 toxin were subjected to site-directed mutagenesis. In the oxidation of nifedipine, the CLint value of R106A was increased by nearly two-folds compared with the wild-type CYP3A29, while the substrate affinities and CLint values of S119A and K212A were significantly reduced. In the hydroxylation of T-2 toxin, the generation of 3'-OH-T-2 by R105A, S119A and K212A was significantly less than that by the wild-type, whereas R106A slightly increased the generation of 3'-OH-T-2. These results were further confirmed by isothermal titration calorimetry analysis, suggesting that these four residues are important in the hydroxylation of T-2 toxin and Arg105 may be a specific recognition site for the toxin. Our study suggests a possible structure-function relationship of CYP3A29 in the hydroxylation of T-2 toxin, providing with new insights into the mechanism of CYP3A enzymes in the biotransformation of T-2 toxin.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106769</identifier><identifier>PMID: 25184434</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Animal health ; Animals ; Biochemistry ; Biology and Life Sciences ; Biotransformation ; Calorimetry ; Crystal structure ; Cytochrome ; Cytochrome P-450 ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Cytotoxicity ; Docking ; Enzymes ; Function analysis ; Homology ; Humans ; Hydroxylation ; Laboratories ; Ligands ; Livestock ; Metabolism ; Metabolites ; Molecular Docking Simulation ; Mutagenesis ; Nifedipine ; Oxidation ; Poultry ; Protein synthesis ; Quality ; Residues ; Risk assessment ; Site-directed mutagenesis ; Structure-Activity Relationship ; Structure-function relationships ; Studies ; Substrates ; Swine ; T-2 Toxin ; Titration ; Titration calorimetry ; Toxins ; Trichothecenes</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e106769</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Cheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Cheng et al 2014 Cheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-469ce8956f145a9fe7e0e0abc8531d208b486c3123404cf7de96fb5493f12e113</citedby><cites>FETCH-LOGICAL-c692t-469ce8956f145a9fe7e0e0abc8531d208b486c3123404cf7de96fb5493f12e113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153680/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153680/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25184434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Porollo, Alexey</contributor><creatorcontrib>Cheng, Guyue</creatorcontrib><creatorcontrib>Liu, Changcun</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Pan, Yuanhu</creatorcontrib><creatorcontrib>Huang, Lingli</creatorcontrib><creatorcontrib>Hao, Haihong</creatorcontrib><creatorcontrib>Dai, Menghong</creatorcontrib><creatorcontrib>Yuan, Zonghui</creatorcontrib><title>Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2 toxin was docked into a homology model of CYP3A29 based on a crystal structure of CYP3A4 using AutoDock 4.0. Nine residues of CYP3A29, Arg105, Arg106, Phe108, Ser119, Lys212, Phe213, Phe215, Arg372 and Glu374, which were found within 5 Å around T-2 toxin were subjected to site-directed mutagenesis. In the oxidation of nifedipine, the CLint value of R106A was increased by nearly two-folds compared with the wild-type CYP3A29, while the substrate affinities and CLint values of S119A and K212A were significantly reduced. In the hydroxylation of T-2 toxin, the generation of 3'-OH-T-2 by R105A, S119A and K212A was significantly less than that by the wild-type, whereas R106A slightly increased the generation of 3'-OH-T-2. These results were further confirmed by isothermal titration calorimetry analysis, suggesting that these four residues are important in the hydroxylation of T-2 toxin and Arg105 may be a specific recognition site for the toxin. Our study suggests a possible structure-function relationship of CYP3A29 in the hydroxylation of T-2 toxin, providing with new insights into the mechanism of CYP3A enzymes in the biotransformation of T-2 toxin.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Animal health</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biotransformation</subject><subject>Calorimetry</subject><subject>Crystal structure</subject><subject>Cytochrome</subject><subject>Cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Cytotoxicity</subject><subject>Docking</subject><subject>Enzymes</subject><subject>Function analysis</subject><subject>Homology</subject><subject>Humans</subject><subject>Hydroxylation</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Livestock</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular Docking Simulation</subject><subject>Mutagenesis</subject><subject>Nifedipine</subject><subject>Oxidation</subject><subject>Poultry</subject><subject>Protein synthesis</subject><subject>Quality</subject><subject>Residues</subject><subject>Risk assessment</subject><subject>Site-directed mutagenesis</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>Substrates</subject><subject>Swine</subject><subject>T-2 Toxin</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Toxins</subject><subject>Trichothecenes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHixa75nciMsxY9CoWKrtyGTOdnNOjtZk0zp_gd_tNnutnRBQXKRkDzve8LLOVX1kuApYTV5vwxjHEw_XYcBpphgWUv1qDomitGJpJg9fnA-qp6ltMRYsEbKp9URFaThnPHj6vdljqPNY4SJGwebfRiQKbab5BMKDq1DtH4AZDc52EUMK0BfucCIzahCfkB5AWix6WK42fTmVl1EVxOKcrgpzyahCNdgeuhQu0FdsD_9MC8VOrQas5nDANtCKY-dh_S8euJMn-DFfj-pvn_6eHX6ZXJ-8fnsdHY-sVLRPOFSWWiUkI5wYZSDGjBg09pGMNJR3LS8kZYRyjjm1tUdKOlawRVzhAIh7KR6vfNd9yHpfZBJEyGU5ISrphBnO6ILZqnX0a9M3OhgvL69CHGuTcze9qBbW9eClDBd5ziVtLVKgWU1F11NKN5W-7CvNrYr6CwMOZr-wPTwZfALPQ_XmhPBZIOLwZu9QQy_Rkj5H1_eU_OStvaDC8XMrnyyesaJVLVoOC3U9C9UWR2svC2t5Hy5PxC8OxAUJsNNnpsxJX12-e3_2Ysfh-zbB-yitEhepNCP2x5KhyDfgTaGlCK4--QI1ttJuEtDbydB7yehyF49TP1edNf67A-fQgQR</recordid><startdate>20140903</startdate><enddate>20140903</enddate><creator>Cheng, Guyue</creator><creator>Liu, Changcun</creator><creator>Wang, Xu</creator><creator>Ma, Hongmin</creator><creator>Pan, Yuanhu</creator><creator>Huang, Lingli</creator><creator>Hao, Haihong</creator><creator>Dai, Menghong</creator><creator>Yuan, Zonghui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140903</creationdate><title>Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies</title><author>Cheng, Guyue ; Liu, Changcun ; Wang, Xu ; Ma, Hongmin ; Pan, Yuanhu ; Huang, Lingli ; Hao, Haihong ; Dai, Menghong ; Yuan, Zonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-469ce8956f145a9fe7e0e0abc8531d208b486c3123404cf7de96fb5493f12e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Animal health</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biotransformation</topic><topic>Calorimetry</topic><topic>Crystal structure</topic><topic>Cytochrome</topic><topic>Cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Cytotoxicity</topic><topic>Docking</topic><topic>Enzymes</topic><topic>Function analysis</topic><topic>Homology</topic><topic>Humans</topic><topic>Hydroxylation</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Livestock</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular Docking Simulation</topic><topic>Mutagenesis</topic><topic>Nifedipine</topic><topic>Oxidation</topic><topic>Poultry</topic><topic>Protein synthesis</topic><topic>Quality</topic><topic>Residues</topic><topic>Risk assessment</topic><topic>Site-directed mutagenesis</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>Substrates</topic><topic>Swine</topic><topic>T-2 Toxin</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Toxins</topic><topic>Trichothecenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Guyue</creatorcontrib><creatorcontrib>Liu, Changcun</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Pan, Yuanhu</creatorcontrib><creatorcontrib>Huang, Lingli</creatorcontrib><creatorcontrib>Hao, Haihong</creatorcontrib><creatorcontrib>Dai, Menghong</creatorcontrib><creatorcontrib>Yuan, Zonghui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Guyue</au><au>Liu, Changcun</au><au>Wang, Xu</au><au>Ma, Hongmin</au><au>Pan, Yuanhu</au><au>Huang, Lingli</au><au>Hao, Haihong</au><au>Dai, Menghong</au><au>Yuan, Zonghui</au><au>Porollo, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-03</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e106769</spage><pages>e106769-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2 toxin was docked into a homology model of CYP3A29 based on a crystal structure of CYP3A4 using AutoDock 4.0. Nine residues of CYP3A29, Arg105, Arg106, Phe108, Ser119, Lys212, Phe213, Phe215, Arg372 and Glu374, which were found within 5 Å around T-2 toxin were subjected to site-directed mutagenesis. In the oxidation of nifedipine, the CLint value of R106A was increased by nearly two-folds compared with the wild-type CYP3A29, while the substrate affinities and CLint values of S119A and K212A were significantly reduced. In the hydroxylation of T-2 toxin, the generation of 3'-OH-T-2 by R105A, S119A and K212A was significantly less than that by the wild-type, whereas R106A slightly increased the generation of 3'-OH-T-2. These results were further confirmed by isothermal titration calorimetry analysis, suggesting that these four residues are important in the hydroxylation of T-2 toxin and Arg105 may be a specific recognition site for the toxin. Our study suggests a possible structure-function relationship of CYP3A29 in the hydroxylation of T-2 toxin, providing with new insights into the mechanism of CYP3A enzymes in the biotransformation of T-2 toxin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25184434</pmid><doi>10.1371/journal.pone.0106769</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-09, Vol.9 (9), p.e106769
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1559641498
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Amino acids
Analysis
Animal health
Animals
Biochemistry
Biology and Life Sciences
Biotransformation
Calorimetry
Crystal structure
Cytochrome
Cytochrome P-450
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Cytotoxicity
Docking
Enzymes
Function analysis
Homology
Humans
Hydroxylation
Laboratories
Ligands
Livestock
Metabolism
Metabolites
Molecular Docking Simulation
Mutagenesis
Nifedipine
Oxidation
Poultry
Protein synthesis
Quality
Residues
Risk assessment
Site-directed mutagenesis
Structure-Activity Relationship
Structure-function relationships
Studies
Substrates
Swine
T-2 Toxin
Titration
Titration calorimetry
Toxins
Trichothecenes
title Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-function%20analysis%20of%20porcine%20cytochrome%20P450%203A29%20in%20the%20hydroxylation%20of%20T-2%20toxin%20as%20revealed%20by%20docking%20and%20mutagenesis%20studies&rft.jtitle=PloS%20one&rft.au=Cheng,%20Guyue&rft.date=2014-09-03&rft.volume=9&rft.issue=9&rft.spage=e106769&rft.pages=e106769-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106769&rft_dat=%3Cgale_plos_%3EA416975842%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559641498&rft_id=info:pmid/25184434&rft_galeid=A416975842&rft_doaj_id=oai_doaj_org_article_bc7751434fdf4262bc99ec3745d71201&rfr_iscdi=true