Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina

Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e104636-e104636
Hauptverfasser: Fornasero, Laura Viviana, Del Papa, María Florencia, López, José Luis, Albicoro, Francisco Javier, Zabala, Juan Marcelo, Toniutti, María Antonieta, Pensiero, José Francisco, Lagares, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e104636
container_issue 8
container_start_page e104636
container_title PloS one
container_volume 9
creator Fornasero, Laura Viviana
Del Papa, María Florencia
López, José Luis
Albicoro, Francisco Javier
Zabala, Juan Marcelo
Toniutti, María Antonieta
Pensiero, José Francisco
Lagares, Antonio
description Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected--containing isolates with different abiotic-stress tolerances--showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126--previously isolated from Leucaena leucocephala--that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera--rhizobia, sinorhizobia, and mesorhizobia--of full N2-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.
doi_str_mv 10.1371/journal.pone.0104636
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1556011101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3137adf28ffa419aa4fcd1b01340133d</doaj_id><sourcerecordid>3413077761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-43736fecb472ca0f2ab7831080027982ef51b3e5248ae192203407e15f8db8e73</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK3-A9GANxW6a77m60ao1WqhoKBehzOZzE7WTDJNMpXtX_JPmt2dlla8CAk573ly3pOTZS8JXhJWkndrN3kLZjk6q5aYYF6w4lF2SGpGFwXF7PG980H2LIQ1xjmriuJpdkBzkrO6qg-zP996ZV3cjFqeoMEZJScDHoFtUdgMjXZRSyR78CCj8voGonYWuQ7FXiHf6xvXaDCz1sawDX1UYQAb-ymgEcIIBqRK5-NLbdth-RZ9mPwv8DEhIKKVd7-Rtjve6N21tlJtId8TAdC5OkGnfqVs1BaeZ086MEG9mPej7Of5px9nXxaXXz9fnJ1eLmROi7jgrGRFp2TDSyoBdxSasmIEVxjTsq6o6nLSMJVTXoEiNU394bhUJO-qtqlUyY6y13vuaFwQc5-DIHleYEIIJklxsVe0DtZi9HoAvxEOtNhdOL8SyaCWRgmWPgvajlZdB5zUALyTLWkShKfF2sR6P782NYNqZfLqwTyAPoxY3YuVuxaccEaLPAGOZ4B3V5MKUQw6SGUMWOWmXd0lrjjGVZK--Uf6f3d8r5LeheBVd1cMwWI7e7dZYjt7Yp69lPbqvpG7pNthY38BPM3aLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556011101</pqid></control><display><type>article</type><title>Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fornasero, Laura Viviana ; Del Papa, María Florencia ; López, José Luis ; Albicoro, Francisco Javier ; Zabala, Juan Marcelo ; Toniutti, María Antonieta ; Pensiero, José Francisco ; Lagares, Antonio</creator><contributor>Hudson, André O.</contributor><creatorcontrib>Fornasero, Laura Viviana ; Del Papa, María Florencia ; López, José Luis ; Albicoro, Francisco Javier ; Zabala, Juan Marcelo ; Toniutti, María Antonieta ; Pensiero, José Francisco ; Lagares, Antonio ; Hudson, André O.</creatorcontrib><description>Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected--containing isolates with different abiotic-stress tolerances--showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126--previously isolated from Leucaena leucocephala--that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera--rhizobia, sinorhizobia, and mesorhizobia--of full N2-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0104636</identifier><identifier>PMID: 25153989</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidity ; Acids ; Argentina ; Biology and Life Sciences ; Desmanthus paspalaceus ; Desmanthus virgatus ; DNA fingerprinting ; DNA, Ribosomal - genetics ; Fabaceae - growth &amp; development ; Fabaceae - microbiology ; Fabaceae - physiology ; Fodder ; Genetic diversity ; Genetic Variation ; Germplasm ; Homology ; Inoculation ; Iron ; Legumes ; Leguminosae ; Leucaena leucocephala ; Livestock ; Mimosoidae ; Nitrogenation ; Nodules ; Phylogeny ; Quality control ; Rhizobium - genetics ; Rhizobium - metabolism ; Rhizobium - physiology ; Root nodules ; rRNA 16S ; Salts ; Sinorhizobium terangae ; Strain ; Stress, Physiological ; Symbionts ; Symbiosis - genetics ; Temperature tolerance ; Tolerances</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e104636-e104636</ispartof><rights>2014 Fornasero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Fornasero et al 2014 Fornasero et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-43736fecb472ca0f2ab7831080027982ef51b3e5248ae192203407e15f8db8e73</citedby><cites>FETCH-LOGICAL-c526t-43736fecb472ca0f2ab7831080027982ef51b3e5248ae192203407e15f8db8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25153989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hudson, André O.</contributor><creatorcontrib>Fornasero, Laura Viviana</creatorcontrib><creatorcontrib>Del Papa, María Florencia</creatorcontrib><creatorcontrib>López, José Luis</creatorcontrib><creatorcontrib>Albicoro, Francisco Javier</creatorcontrib><creatorcontrib>Zabala, Juan Marcelo</creatorcontrib><creatorcontrib>Toniutti, María Antonieta</creatorcontrib><creatorcontrib>Pensiero, José Francisco</creatorcontrib><creatorcontrib>Lagares, Antonio</creatorcontrib><title>Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected--containing isolates with different abiotic-stress tolerances--showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126--previously isolated from Leucaena leucocephala--that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera--rhizobia, sinorhizobia, and mesorhizobia--of full N2-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.</description><subject>Acidity</subject><subject>Acids</subject><subject>Argentina</subject><subject>Biology and Life Sciences</subject><subject>Desmanthus paspalaceus</subject><subject>Desmanthus virgatus</subject><subject>DNA fingerprinting</subject><subject>DNA, Ribosomal - genetics</subject><subject>Fabaceae - growth &amp; development</subject><subject>Fabaceae - microbiology</subject><subject>Fabaceae - physiology</subject><subject>Fodder</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Germplasm</subject><subject>Homology</subject><subject>Inoculation</subject><subject>Iron</subject><subject>Legumes</subject><subject>Leguminosae</subject><subject>Leucaena leucocephala</subject><subject>Livestock</subject><subject>Mimosoidae</subject><subject>Nitrogenation</subject><subject>Nodules</subject><subject>Phylogeny</subject><subject>Quality control</subject><subject>Rhizobium - genetics</subject><subject>Rhizobium - metabolism</subject><subject>Rhizobium - physiology</subject><subject>Root nodules</subject><subject>rRNA 16S</subject><subject>Salts</subject><subject>Sinorhizobium terangae</subject><subject>Strain</subject><subject>Stress, Physiological</subject><subject>Symbionts</subject><subject>Symbiosis - genetics</subject><subject>Temperature tolerance</subject><subject>Tolerances</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbK3-A9GANxW6a77m60ao1WqhoKBehzOZzE7WTDJNMpXtX_JPmt2dlla8CAk573ly3pOTZS8JXhJWkndrN3kLZjk6q5aYYF6w4lF2SGpGFwXF7PG980H2LIQ1xjmriuJpdkBzkrO6qg-zP996ZV3cjFqeoMEZJScDHoFtUdgMjXZRSyR78CCj8voGonYWuQ7FXiHf6xvXaDCz1sawDX1UYQAb-ymgEcIIBqRK5-NLbdth-RZ9mPwv8DEhIKKVd7-Rtjve6N21tlJtId8TAdC5OkGnfqVs1BaeZ086MEG9mPej7Of5px9nXxaXXz9fnJ1eLmROi7jgrGRFp2TDSyoBdxSasmIEVxjTsq6o6nLSMJVTXoEiNU394bhUJO-qtqlUyY6y13vuaFwQc5-DIHleYEIIJklxsVe0DtZi9HoAvxEOtNhdOL8SyaCWRgmWPgvajlZdB5zUALyTLWkShKfF2sR6P782NYNqZfLqwTyAPoxY3YuVuxaccEaLPAGOZ4B3V5MKUQw6SGUMWOWmXd0lrjjGVZK--Uf6f3d8r5LeheBVd1cMwWI7e7dZYjt7Yp69lPbqvpG7pNthY38BPM3aLA</recordid><startdate>20140825</startdate><enddate>20140825</enddate><creator>Fornasero, Laura Viviana</creator><creator>Del Papa, María Florencia</creator><creator>López, José Luis</creator><creator>Albicoro, Francisco Javier</creator><creator>Zabala, Juan Marcelo</creator><creator>Toniutti, María Antonieta</creator><creator>Pensiero, José Francisco</creator><creator>Lagares, Antonio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140825</creationdate><title>Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina</title><author>Fornasero, Laura Viviana ; Del Papa, María Florencia ; López, José Luis ; Albicoro, Francisco Javier ; Zabala, Juan Marcelo ; Toniutti, María Antonieta ; Pensiero, José Francisco ; Lagares, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-43736fecb472ca0f2ab7831080027982ef51b3e5248ae192203407e15f8db8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidity</topic><topic>Acids</topic><topic>Argentina</topic><topic>Biology and Life Sciences</topic><topic>Desmanthus paspalaceus</topic><topic>Desmanthus virgatus</topic><topic>DNA fingerprinting</topic><topic>DNA, Ribosomal - genetics</topic><topic>Fabaceae - growth &amp; development</topic><topic>Fabaceae - microbiology</topic><topic>Fabaceae - physiology</topic><topic>Fodder</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Germplasm</topic><topic>Homology</topic><topic>Inoculation</topic><topic>Iron</topic><topic>Legumes</topic><topic>Leguminosae</topic><topic>Leucaena leucocephala</topic><topic>Livestock</topic><topic>Mimosoidae</topic><topic>Nitrogenation</topic><topic>Nodules</topic><topic>Phylogeny</topic><topic>Quality control</topic><topic>Rhizobium - genetics</topic><topic>Rhizobium - metabolism</topic><topic>Rhizobium - physiology</topic><topic>Root nodules</topic><topic>rRNA 16S</topic><topic>Salts</topic><topic>Sinorhizobium terangae</topic><topic>Strain</topic><topic>Stress, Physiological</topic><topic>Symbionts</topic><topic>Symbiosis - genetics</topic><topic>Temperature tolerance</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fornasero, Laura Viviana</creatorcontrib><creatorcontrib>Del Papa, María Florencia</creatorcontrib><creatorcontrib>López, José Luis</creatorcontrib><creatorcontrib>Albicoro, Francisco Javier</creatorcontrib><creatorcontrib>Zabala, Juan Marcelo</creatorcontrib><creatorcontrib>Toniutti, María Antonieta</creatorcontrib><creatorcontrib>Pensiero, José Francisco</creatorcontrib><creatorcontrib>Lagares, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fornasero, Laura Viviana</au><au>Del Papa, María Florencia</au><au>López, José Luis</au><au>Albicoro, Francisco Javier</au><au>Zabala, Juan Marcelo</au><au>Toniutti, María Antonieta</au><au>Pensiero, José Francisco</au><au>Lagares, Antonio</au><au>Hudson, André O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-25</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e104636</spage><epage>e104636</epage><pages>e104636-e104636</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected--containing isolates with different abiotic-stress tolerances--showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126--previously isolated from Leucaena leucocephala--that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera--rhizobia, sinorhizobia, and mesorhizobia--of full N2-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25153989</pmid><doi>10.1371/journal.pone.0104636</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e104636-e104636
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1556011101
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acidity
Acids
Argentina
Biology and Life Sciences
Desmanthus paspalaceus
Desmanthus virgatus
DNA fingerprinting
DNA, Ribosomal - genetics
Fabaceae - growth & development
Fabaceae - microbiology
Fabaceae - physiology
Fodder
Genetic diversity
Genetic Variation
Germplasm
Homology
Inoculation
Iron
Legumes
Leguminosae
Leucaena leucocephala
Livestock
Mimosoidae
Nitrogenation
Nodules
Phylogeny
Quality control
Rhizobium - genetics
Rhizobium - metabolism
Rhizobium - physiology
Root nodules
rRNA 16S
Salts
Sinorhizobium terangae
Strain
Stress, Physiological
Symbionts
Symbiosis - genetics
Temperature tolerance
Tolerances
title Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic,%20molecular%20and%20symbiotic%20characterization%20of%20the%20rhizobial%20symbionts%20of%20Desmanthus%20paspalaceus%20(Lindm.)%20Burkart%20that%20grow%20in%20the%20province%20of%20Santa%20Fe,%20Argentina&rft.jtitle=PloS%20one&rft.au=Fornasero,%20Laura%20Viviana&rft.date=2014-08-25&rft.volume=9&rft.issue=8&rft.spage=e104636&rft.epage=e104636&rft.pages=e104636-e104636&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0104636&rft_dat=%3Cproquest_plos_%3E3413077761%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556011101&rft_id=info:pmid/25153989&rft_doaj_id=oai_doaj_org_article_3137adf28ffa419aa4fcd1b01340133d&rfr_iscdi=true