Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease

The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e105556-e105556
Hauptverfasser: Lindenberg, Katrin S, Weydt, Patrick, Müller, Hans-Peter, Bornstedt, Axel, Ludolph, Albert C, Landwehrmeyer, G Bernhard, Rottbauer, Wolfgang, Kassubek, Jan, Rasche, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e105556
container_issue 8
container_start_page e105556
container_title PloS one
container_volume 9
creator Lindenberg, Katrin S
Weydt, Patrick
Müller, Hans-Peter
Bornstedt, Axel
Ludolph, Albert C
Landwehrmeyer, G Bernhard
Rottbauer, Wolfgang
Kassubek, Jan
Rasche, Volker
description The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes.
doi_str_mv 10.1371/journal.pone.0105556
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1555283592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418139222</galeid><doaj_id>oai_doaj_org_article_cc4968a994c54fe38c0855de15fcb15f</doaj_id><sourcerecordid>A418139222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2b6f154ff9e2fceda12de98cfb761937c197e0b962f7e59f9ab178b07209c4af3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHqx2yTzmRuhFLULlcJavQ2ZzMlulplkTDJWr_3jZrrTsiO9kMBkOHnOm5w3OUnykuAlSUtyurODM6Jd9tbAEhOc53nxKDkmLKWLguL08cH_UfLM-x3GeVoVxdPkiOYky7K8PE7-XN_YRW-1CagTG6PD0AD6sl4hZR1yotdNjPe9NhtkFaqdvTFINLq3HlDQ3g-AhGmQDh5FrNVSBG0NChaFLaB1cUpRZ4cId7aBdtS4GEyIciFSjfYgPDxPnijRengxzSfJt08fr88vFpdXn1fnZ5cLWTAaFrQuFMkzpRhQJaERhDbAKqnqsoiVlpKwEnDNCqpKyJlioiZlVeOSYiYzodKT5PVet2-t55N_npPoHK3SnNFIrPZEY8WO9053wv3mVmh-G7Buw4ULWrbApcxYUQnGMhnPBGklcZXnDZBcyTp-otaHabeh7qCRYIIT7Ux0vmL0lm_sT56RDFcER4F3k4CzPwbwgXfaS2hbYSBaenvuWDgt04i--Qd9uLqJ2ohYgDbKxn3lKMrPMlKRlFE6UssHqDga6LSMj03pGJ8lvJ8lRCbAr7ARg_d89XX9_-zV9zn79oDdgmjD1tt2GB-Yn4PZHpTOeu9A3ZtMMB975c4NPvYKn3olpr06vKD7pLvmSP8Cx4kPqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555283592</pqid></control><display><type>article</type><title>Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lindenberg, Katrin S ; Weydt, Patrick ; Müller, Hans-Peter ; Bornstedt, Axel ; Ludolph, Albert C ; Landwehrmeyer, G Bernhard ; Rottbauer, Wolfgang ; Kassubek, Jan ; Rasche, Volker</creator><contributor>Alemany, Marià</contributor><creatorcontrib>Lindenberg, Katrin S ; Weydt, Patrick ; Müller, Hans-Peter ; Bornstedt, Axel ; Ludolph, Albert C ; Landwehrmeyer, G Bernhard ; Rottbauer, Wolfgang ; Kassubek, Jan ; Rasche, Volker ; Alemany, Marià</creatorcontrib><description>The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0105556</identifier><identifier>PMID: 25144457</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Adipocytes ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - pathology ; Adults ; Amyotrophic lateral sclerosis ; Animals ; Biology and Life Sciences ; Body fat ; Cachexia ; Diabetes mellitus ; Digital mapping ; Disease Models, Animal ; Energy ; Feasibility studies ; Female ; Genetic engineering ; Huntington Disease - diagnosis ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Internal medicine ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Medicine and Health Sciences ; Methods ; Mice ; Mice, Transgenic ; Moisture content ; Neurology ; NMR ; Nuclear magnetic resonance ; Pathogenesis ; Phenotypes ; Physiology ; Rodents ; Spectrum analysis ; Tomography ; Transgenic mice ; Water content</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e105556-e105556</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Lindenberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Lindenberg et al 2014 Lindenberg et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2b6f154ff9e2fceda12de98cfb761937c197e0b962f7e59f9ab178b07209c4af3</citedby><cites>FETCH-LOGICAL-c692t-2b6f154ff9e2fceda12de98cfb761937c197e0b962f7e59f9ab178b07209c4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140810/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140810/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25144457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alemany, Marià</contributor><creatorcontrib>Lindenberg, Katrin S</creatorcontrib><creatorcontrib>Weydt, Patrick</creatorcontrib><creatorcontrib>Müller, Hans-Peter</creatorcontrib><creatorcontrib>Bornstedt, Axel</creatorcontrib><creatorcontrib>Ludolph, Albert C</creatorcontrib><creatorcontrib>Landwehrmeyer, G Bernhard</creatorcontrib><creatorcontrib>Rottbauer, Wolfgang</creatorcontrib><creatorcontrib>Kassubek, Jan</creatorcontrib><creatorcontrib>Rasche, Volker</creatorcontrib><title>Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes.</description><subject>Abnormalities</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - pathology</subject><subject>Adults</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Body fat</subject><subject>Cachexia</subject><subject>Diabetes mellitus</subject><subject>Digital mapping</subject><subject>Disease Models, Animal</subject><subject>Energy</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Genetic engineering</subject><subject>Huntington Disease - diagnosis</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Internal medicine</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Moisture content</subject><subject>Neurology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Rodents</subject><subject>Spectrum analysis</subject><subject>Tomography</subject><subject>Transgenic mice</subject><subject>Water content</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHqx2yTzmRuhFLULlcJavQ2ZzMlulplkTDJWr_3jZrrTsiO9kMBkOHnOm5w3OUnykuAlSUtyurODM6Jd9tbAEhOc53nxKDkmLKWLguL08cH_UfLM-x3GeVoVxdPkiOYky7K8PE7-XN_YRW-1CagTG6PD0AD6sl4hZR1yotdNjPe9NhtkFaqdvTFINLq3HlDQ3g-AhGmQDh5FrNVSBG0NChaFLaB1cUpRZ4cId7aBdtS4GEyIciFSjfYgPDxPnijRengxzSfJt08fr88vFpdXn1fnZ5cLWTAaFrQuFMkzpRhQJaERhDbAKqnqsoiVlpKwEnDNCqpKyJlioiZlVeOSYiYzodKT5PVet2-t55N_npPoHK3SnNFIrPZEY8WO9053wv3mVmh-G7Buw4ULWrbApcxYUQnGMhnPBGklcZXnDZBcyTp-otaHabeh7qCRYIIT7Ux0vmL0lm_sT56RDFcER4F3k4CzPwbwgXfaS2hbYSBaenvuWDgt04i--Qd9uLqJ2ohYgDbKxn3lKMrPMlKRlFE6UssHqDga6LSMj03pGJ8lvJ8lRCbAr7ARg_d89XX9_-zV9zn79oDdgmjD1tt2GB-Yn4PZHpTOeu9A3ZtMMB975c4NPvYKn3olpr06vKD7pLvmSP8Cx4kPqQ</recordid><startdate>20140821</startdate><enddate>20140821</enddate><creator>Lindenberg, Katrin S</creator><creator>Weydt, Patrick</creator><creator>Müller, Hans-Peter</creator><creator>Bornstedt, Axel</creator><creator>Ludolph, Albert C</creator><creator>Landwehrmeyer, G Bernhard</creator><creator>Rottbauer, Wolfgang</creator><creator>Kassubek, Jan</creator><creator>Rasche, Volker</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140821</creationdate><title>Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease</title><author>Lindenberg, Katrin S ; Weydt, Patrick ; Müller, Hans-Peter ; Bornstedt, Axel ; Ludolph, Albert C ; Landwehrmeyer, G Bernhard ; Rottbauer, Wolfgang ; Kassubek, Jan ; Rasche, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2b6f154ff9e2fceda12de98cfb761937c197e0b962f7e59f9ab178b07209c4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abnormalities</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - pathology</topic><topic>Adults</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Body fat</topic><topic>Cachexia</topic><topic>Diabetes mellitus</topic><topic>Digital mapping</topic><topic>Disease Models, Animal</topic><topic>Energy</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Genetic engineering</topic><topic>Huntington Disease - diagnosis</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Internal medicine</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Moisture content</topic><topic>Neurology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Rodents</topic><topic>Spectrum analysis</topic><topic>Tomography</topic><topic>Transgenic mice</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindenberg, Katrin S</creatorcontrib><creatorcontrib>Weydt, Patrick</creatorcontrib><creatorcontrib>Müller, Hans-Peter</creatorcontrib><creatorcontrib>Bornstedt, Axel</creatorcontrib><creatorcontrib>Ludolph, Albert C</creatorcontrib><creatorcontrib>Landwehrmeyer, G Bernhard</creatorcontrib><creatorcontrib>Rottbauer, Wolfgang</creatorcontrib><creatorcontrib>Kassubek, Jan</creatorcontrib><creatorcontrib>Rasche, Volker</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindenberg, Katrin S</au><au>Weydt, Patrick</au><au>Müller, Hans-Peter</au><au>Bornstedt, Axel</au><au>Ludolph, Albert C</au><au>Landwehrmeyer, G Bernhard</au><au>Rottbauer, Wolfgang</au><au>Kassubek, Jan</au><au>Rasche, Volker</au><au>Alemany, Marià</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-21</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e105556</spage><epage>e105556</epage><pages>e105556-e105556</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25144457</pmid><doi>10.1371/journal.pone.0105556</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e105556-e105556
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1555283592
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abnormalities
Adipocytes
Adipose tissue
Adipose tissue (brown)
Adipose Tissue, Brown - pathology
Adults
Amyotrophic lateral sclerosis
Animals
Biology and Life Sciences
Body fat
Cachexia
Diabetes mellitus
Digital mapping
Disease Models, Animal
Energy
Feasibility studies
Female
Genetic engineering
Huntington Disease - diagnosis
Huntington Disease - pathology
Huntington's disease
Huntingtons disease
Internal medicine
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine and Health Sciences
Methods
Mice
Mice, Transgenic
Moisture content
Neurology
NMR
Nuclear magnetic resonance
Pathogenesis
Phenotypes
Physiology
Rodents
Spectrum analysis
Tomography
Transgenic mice
Water content
title Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-point%20magnitude%20MRI%20for%20rapid%20mapping%20of%20brown%20adipose%20tissue%20and%20its%20application%20to%20the%20R6/2%20mouse%20model%20of%20Huntington%20disease&rft.jtitle=PloS%20one&rft.au=Lindenberg,%20Katrin%20S&rft.date=2014-08-21&rft.volume=9&rft.issue=8&rft.spage=e105556&rft.epage=e105556&rft.pages=e105556-e105556&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0105556&rft_dat=%3Cgale_plos_%3EA418139222%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555283592&rft_id=info:pmid/25144457&rft_galeid=A418139222&rft_doaj_id=oai_doaj_org_article_cc4968a994c54fe38c0855de15fcb15f&rfr_iscdi=true