Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly

Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e105073-e105073
Hauptverfasser: Kashima, Yuri, Kanematsu, Satoshi, Asai, Saori, Kusada, Mio, Watanabe, Suzuyo, Kawashima, Takuji, Nakamura, Tadashi, Shimada, Masaya, Goto, Tsuyoshi, Nagaoka, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e105073
container_issue 8
container_start_page e105073
container_title PloS one
container_volume 9
creator Kashima, Yuri
Kanematsu, Satoshi
Asai, Saori
Kusada, Mio
Watanabe, Suzuyo
Kawashima, Takuji
Nakamura, Tadashi
Shimada, Masaya
Goto, Tsuyoshi
Nagaoka, Satoshi
description Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.
doi_str_mv 10.1371/journal.pone.0105073
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1555283585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418139293</galeid><doaj_id>oai_doaj_org_article_b80ff4b6ebab439791ab41d51e090103</doaj_id><sourcerecordid>A418139293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bc7ede4019bc53b277ed3581582dccdc4de3fa1885f483b0b0946a33c8ec8a443</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgijsjEmTtOmNsCx-DCws-HUb0nzMZEibbtIOzr83dTrLVPZCenGa5DlvkvfkZNlLBJcIl-jD1g-hFW7Z-VYvIYIUlvhRdo4qnC-KHOLHJ_9n2bMYtxBSzIriaXaWU0RIicl55lZKt701Vore-hZ4AwRo_U47sNl3Xm6807HXIYXGStAF32vbXoJGbH0Awe-FA1vt3P64BNAlUDrYnVbABN-cMs-zJ0a4qF9M8SL7-fnTj-uvi5vbL6vrq5uFLKq8X9Sy1EoTiKpaUlznZRpiyhBluZJSSaI0NgIxRg1huIY1rEghMJZMSyYIwRfZ64Nu53zkk1GRI0ppzpISTcTqQCgvtrwLthFhz72w_O-ED2suQm-l07xm0BhSF7oWNcFVWaEUkaJIwyrZjpPWx2m3oW60ksnPINxMdL7S2g1f-x0niMCSVEng3SQQ_N2Q7OaNjTIZJlrth8O5xyqyMqFv_kEfvt1ErUW6gG2NT_vKUZRfEcQQrvJqPPfyASp9aix1elXGpvlZwvtZQmJ6_btfiyFGvvr-7f_Z219z9u0Ju9HC9Zvo3TA-yDgHyQGUwccYtLk3GUE-NsXRDT42BZ-aIqW9Oi3QfdKxC_AfGTsIHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555283585</pqid></control><display><type>article</type><title>Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kashima, Yuri ; Kanematsu, Satoshi ; Asai, Saori ; Kusada, Mio ; Watanabe, Suzuyo ; Kawashima, Takuji ; Nakamura, Tadashi ; Shimada, Masaya ; Goto, Tsuyoshi ; Nagaoka, Satoshi</creator><contributor>Moschetta, Antonio</contributor><creatorcontrib>Kashima, Yuri ; Kanematsu, Satoshi ; Asai, Saori ; Kusada, Mio ; Watanabe, Suzuyo ; Kawashima, Takuji ; Nakamura, Tadashi ; Shimada, Masaya ; Goto, Tsuyoshi ; Nagaoka, Satoshi ; Moschetta, Antonio</creatorcontrib><description>Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0105073</identifier><identifier>PMID: 25144734</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Animals ; Anticholesteremic agents ; Bile ; Bile acids ; Binding proteins ; Biology and Life Sciences ; Blood cholesterol ; Blotting, Western ; Caco-2 Cells ; Cardiovascular disease ; Casein ; Caseins - pharmacology ; Catabolism ; Cholesterol ; Cholesterol - blood ; Cholic acid ; Chromatography, Gel ; Cytochrome P-450 ; Deoxycholic acid ; Diet ; Electrophoresis, Polyacrylamide Gel ; Excretion ; Fatty Acids - chemistry ; Glycoproteins - chemistry ; Glycoproteins - pharmacology ; Hep G2 Cells ; Hepatocytes ; Humans ; Hydroxylase ; Hypercholesterolemia ; Insect Proteins - chemistry ; Insect Proteins - pharmacology ; Ionization ; Lipids ; Liver ; Liver - drug effects ; Liver - metabolism ; Low density lipoprotein ; Mass spectrometry ; Mass spectroscopy ; mRNA ; Phytosterols ; Protein binding ; Proteins ; Rats ; RNA ; Rodents ; Royal jelly ; Sitosterols - pharmacology ; Solubility ; Soybeans ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e105073-e105073</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Kashima et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Kashima et al 2014 Kashima et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bc7ede4019bc53b277ed3581582dccdc4de3fa1885f483b0b0946a33c8ec8a443</citedby><cites>FETCH-LOGICAL-c692t-bc7ede4019bc53b277ed3581582dccdc4de3fa1885f483b0b0946a33c8ec8a443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140749/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140749/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25144734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moschetta, Antonio</contributor><creatorcontrib>Kashima, Yuri</creatorcontrib><creatorcontrib>Kanematsu, Satoshi</creatorcontrib><creatorcontrib>Asai, Saori</creatorcontrib><creatorcontrib>Kusada, Mio</creatorcontrib><creatorcontrib>Watanabe, Suzuyo</creatorcontrib><creatorcontrib>Kawashima, Takuji</creatorcontrib><creatorcontrib>Nakamura, Tadashi</creatorcontrib><creatorcontrib>Shimada, Masaya</creatorcontrib><creatorcontrib>Goto, Tsuyoshi</creatorcontrib><creatorcontrib>Nagaoka, Satoshi</creatorcontrib><title>Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.</description><subject>Acids</subject><subject>Animals</subject><subject>Anticholesteremic agents</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Binding proteins</subject><subject>Biology and Life Sciences</subject><subject>Blood cholesterol</subject><subject>Blotting, Western</subject><subject>Caco-2 Cells</subject><subject>Cardiovascular disease</subject><subject>Casein</subject><subject>Caseins - pharmacology</subject><subject>Catabolism</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Cholic acid</subject><subject>Chromatography, Gel</subject><subject>Cytochrome P-450</subject><subject>Deoxycholic acid</subject><subject>Diet</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Excretion</subject><subject>Fatty Acids - chemistry</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - pharmacology</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Hypercholesterolemia</subject><subject>Insect Proteins - chemistry</subject><subject>Insect Proteins - pharmacology</subject><subject>Ionization</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Low density lipoprotein</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>mRNA</subject><subject>Phytosterols</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Rats</subject><subject>RNA</subject><subject>Rodents</subject><subject>Royal jelly</subject><subject>Sitosterols - pharmacology</subject><subject>Solubility</subject><subject>Soybeans</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgijsjEmTtOmNsCx-DCws-HUb0nzMZEibbtIOzr83dTrLVPZCenGa5DlvkvfkZNlLBJcIl-jD1g-hFW7Z-VYvIYIUlvhRdo4qnC-KHOLHJ_9n2bMYtxBSzIriaXaWU0RIicl55lZKt701Vore-hZ4AwRo_U47sNl3Xm6807HXIYXGStAF32vbXoJGbH0Awe-FA1vt3P64BNAlUDrYnVbABN-cMs-zJ0a4qF9M8SL7-fnTj-uvi5vbL6vrq5uFLKq8X9Sy1EoTiKpaUlznZRpiyhBluZJSSaI0NgIxRg1huIY1rEghMJZMSyYIwRfZ64Nu53zkk1GRI0ppzpISTcTqQCgvtrwLthFhz72w_O-ED2suQm-l07xm0BhSF7oWNcFVWaEUkaJIwyrZjpPWx2m3oW60ksnPINxMdL7S2g1f-x0niMCSVEng3SQQ_N2Q7OaNjTIZJlrth8O5xyqyMqFv_kEfvt1ErUW6gG2NT_vKUZRfEcQQrvJqPPfyASp9aix1elXGpvlZwvtZQmJ6_btfiyFGvvr-7f_Z219z9u0Ju9HC9Zvo3TA-yDgHyQGUwccYtLk3GUE-NsXRDT42BZ-aIqW9Oi3QfdKxC_AfGTsIHQ</recordid><startdate>20140821</startdate><enddate>20140821</enddate><creator>Kashima, Yuri</creator><creator>Kanematsu, Satoshi</creator><creator>Asai, Saori</creator><creator>Kusada, Mio</creator><creator>Watanabe, Suzuyo</creator><creator>Kawashima, Takuji</creator><creator>Nakamura, Tadashi</creator><creator>Shimada, Masaya</creator><creator>Goto, Tsuyoshi</creator><creator>Nagaoka, Satoshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140821</creationdate><title>Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly</title><author>Kashima, Yuri ; Kanematsu, Satoshi ; Asai, Saori ; Kusada, Mio ; Watanabe, Suzuyo ; Kawashima, Takuji ; Nakamura, Tadashi ; Shimada, Masaya ; Goto, Tsuyoshi ; Nagaoka, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bc7ede4019bc53b277ed3581582dccdc4de3fa1885f483b0b0946a33c8ec8a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Anticholesteremic agents</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Binding proteins</topic><topic>Biology and Life Sciences</topic><topic>Blood cholesterol</topic><topic>Blotting, Western</topic><topic>Caco-2 Cells</topic><topic>Cardiovascular disease</topic><topic>Casein</topic><topic>Caseins - pharmacology</topic><topic>Catabolism</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Cholic acid</topic><topic>Chromatography, Gel</topic><topic>Cytochrome P-450</topic><topic>Deoxycholic acid</topic><topic>Diet</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Excretion</topic><topic>Fatty Acids - chemistry</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - pharmacology</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Hypercholesterolemia</topic><topic>Insect Proteins - chemistry</topic><topic>Insect Proteins - pharmacology</topic><topic>Ionization</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Low density lipoprotein</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>mRNA</topic><topic>Phytosterols</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Rats</topic><topic>RNA</topic><topic>Rodents</topic><topic>Royal jelly</topic><topic>Sitosterols - pharmacology</topic><topic>Solubility</topic><topic>Soybeans</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashima, Yuri</creatorcontrib><creatorcontrib>Kanematsu, Satoshi</creatorcontrib><creatorcontrib>Asai, Saori</creatorcontrib><creatorcontrib>Kusada, Mio</creatorcontrib><creatorcontrib>Watanabe, Suzuyo</creatorcontrib><creatorcontrib>Kawashima, Takuji</creatorcontrib><creatorcontrib>Nakamura, Tadashi</creatorcontrib><creatorcontrib>Shimada, Masaya</creatorcontrib><creatorcontrib>Goto, Tsuyoshi</creatorcontrib><creatorcontrib>Nagaoka, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashima, Yuri</au><au>Kanematsu, Satoshi</au><au>Asai, Saori</au><au>Kusada, Mio</au><au>Watanabe, Suzuyo</au><au>Kawashima, Takuji</au><au>Nakamura, Tadashi</au><au>Shimada, Masaya</au><au>Goto, Tsuyoshi</au><au>Nagaoka, Satoshi</au><au>Moschetta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-21</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e105073</spage><epage>e105073</epage><pages>e105073-e105073</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25144734</pmid><doi>10.1371/journal.pone.0105073</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e105073-e105073
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1555283585
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Animals
Anticholesteremic agents
Bile
Bile acids
Binding proteins
Biology and Life Sciences
Blood cholesterol
Blotting, Western
Caco-2 Cells
Cardiovascular disease
Casein
Caseins - pharmacology
Catabolism
Cholesterol
Cholesterol - blood
Cholic acid
Chromatography, Gel
Cytochrome P-450
Deoxycholic acid
Diet
Electrophoresis, Polyacrylamide Gel
Excretion
Fatty Acids - chemistry
Glycoproteins - chemistry
Glycoproteins - pharmacology
Hep G2 Cells
Hepatocytes
Humans
Hydroxylase
Hypercholesterolemia
Insect Proteins - chemistry
Insect Proteins - pharmacology
Ionization
Lipids
Liver
Liver - drug effects
Liver - metabolism
Low density lipoprotein
Mass spectrometry
Mass spectroscopy
mRNA
Phytosterols
Protein binding
Proteins
Rats
RNA
Rodents
Royal jelly
Sitosterols - pharmacology
Solubility
Soybeans
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20novel%20hypocholesterolemic%20protein,%20major%20royal%20jelly%20protein%201,%20derived%20from%20royal%20jelly&rft.jtitle=PloS%20one&rft.au=Kashima,%20Yuri&rft.date=2014-08-21&rft.volume=9&rft.issue=8&rft.spage=e105073&rft.epage=e105073&rft.pages=e105073-e105073&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0105073&rft_dat=%3Cgale_plos_%3EA418139293%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555283585&rft_id=info:pmid/25144734&rft_galeid=A418139293&rft_doaj_id=oai_doaj_org_article_b80ff4b6ebab439791ab41d51e090103&rfr_iscdi=true