MafA is required for postnatal proliferation of pancreatic β-cells
The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-c...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-08, Vol.9 (8), p.e104184-e104184 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e104184 |
---|---|
container_issue | 8 |
container_start_page | e104184 |
container_title | PloS one |
container_volume | 9 |
creator | Eto, Koki Nishimura, Wataru Oishi, Hisashi Udagawa, Haruhide Kawaguchi, Miho Hiramoto, Masaki Fujiwara, Toshiyoshi Takahashi, Satoru Yasuda, Kazuki |
description | The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling. |
doi_str_mv | 10.1371/journal.pone.0104184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1553532855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9f4d253b5bf4608a4f03cdc52bdc1a1</doaj_id><sourcerecordid>1554473393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a15dd09fbbba767ec15a93bf63212c30a3161ccb097105e2538ef2e674ce0a973</originalsourceid><addsrcrecordid>eNptkstu1DAUhi0EomXgDRBEYsMmg49vmWyQqhGXSkVsYG0dO3bJyBOndoLEa_EgPBOembRqESvf_vOf71g_IS-BroE38G4X5zRgWI9xcGsKVMBGPCLn0HJWK0b543v7M_Is5x2lkm-UekrOmASmGtGek-0X9BdVn6vkbuY-ua7yMVVjzNOAE4ZqTDH03iWc-jhU0VcjDja5crTVn9-1dSHk5-SJx5Ddi2Vdke8fP3zbfq6vvn663F5c1VYyNdUIsuto640x2KjGWZDYcuMVZ8Asp8hBgbWGtg1Q6ViBdZ65wmkdxbbhK_L65DuGmPUyf9YgJZecbcqyIpcnRRdxp8fU7zH90hF7fbyI6VpjKujBadt60ZUeRhovFN2g8JTbrqCazgJC8Xq_dJvN3nXWDVPC8MD04cvQ_9DX8acWwAUccd8uBinezC5Pet_nw4fh4OJ85Bai4bzlRfrmH-n_pxMnlU0x5-T8HQxQfcjEbZU-ZEIvmShlr-4Pcld0GwL-F4qstcw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553532855</pqid></control><display><type>article</type><title>MafA is required for postnatal proliferation of pancreatic β-cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Eto, Koki ; Nishimura, Wataru ; Oishi, Hisashi ; Udagawa, Haruhide ; Kawaguchi, Miho ; Hiramoto, Masaki ; Fujiwara, Toshiyoshi ; Takahashi, Satoru ; Yasuda, Kazuki</creator><contributor>Abderrahmani, Amar</contributor><creatorcontrib>Eto, Koki ; Nishimura, Wataru ; Oishi, Hisashi ; Udagawa, Haruhide ; Kawaguchi, Miho ; Hiramoto, Masaki ; Fujiwara, Toshiyoshi ; Takahashi, Satoru ; Yasuda, Kazuki ; Abderrahmani, Amar</creatorcontrib><description>The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0104184</identifier><identifier>PMID: 25126749</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adults ; Animals ; Animals, Newborn ; Binding sites ; Biology and Life Sciences ; Cell division ; Cell growth ; Cell Line ; Cell lines ; Cell Proliferation ; Cyclin D2 ; Cyclin D2 - genetics ; Cyclin D2 - metabolism ; Dentistry ; Deoxyribonucleic acid ; Diabetes ; DNA ; Embryology ; Endocrinology ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Reporter ; Glucose ; Glucose metabolism ; Glucose transporter ; Growth hormones ; Homeostasis ; Humans ; Insulin ; Insulin resistance ; Insulin-Secreting Cells - metabolism ; Islets of Langerhans - metabolism ; Janus kinase 2 ; Kinases ; Maf Transcription Factors, Large - genetics ; Maf Transcription Factors, Large - metabolism ; Male ; Maturation ; Medicine ; Medicine and Health Sciences ; Metabolic disorders ; Metabolism ; Mice ; Mice, Knockout ; Molecular modelling ; Newborn babies ; Pancreas ; Pharmaceutical sciences ; Phosphorylation ; Pregnancy ; Prolactin ; Promoter Regions, Genetic ; Rats ; Receptors, Prolactin - genetics ; Rodents ; Signal Transduction ; Signaling ; Stem cell transplantation ; Stem cells ; Transcription factors ; Transcriptome ; Translocation ; Urocortin ; Vitamin D receptors</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e104184-e104184</ispartof><rights>2014 Eto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Eto et al 2014 Eto et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a15dd09fbbba767ec15a93bf63212c30a3161ccb097105e2538ef2e674ce0a973</citedby><cites>FETCH-LOGICAL-c526t-a15dd09fbbba767ec15a93bf63212c30a3161ccb097105e2538ef2e674ce0a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25126749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abderrahmani, Amar</contributor><creatorcontrib>Eto, Koki</creatorcontrib><creatorcontrib>Nishimura, Wataru</creatorcontrib><creatorcontrib>Oishi, Hisashi</creatorcontrib><creatorcontrib>Udagawa, Haruhide</creatorcontrib><creatorcontrib>Kawaguchi, Miho</creatorcontrib><creatorcontrib>Hiramoto, Masaki</creatorcontrib><creatorcontrib>Fujiwara, Toshiyoshi</creatorcontrib><creatorcontrib>Takahashi, Satoru</creatorcontrib><creatorcontrib>Yasuda, Kazuki</creatorcontrib><title>MafA is required for postnatal proliferation of pancreatic β-cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling.</description><subject>Adults</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Cyclin D2</subject><subject>Cyclin D2 - genetics</subject><subject>Cyclin D2 - metabolism</subject><subject>Dentistry</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>Embryology</subject><subject>Endocrinology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose transporter</subject><subject>Growth hormones</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Islets of Langerhans - metabolism</subject><subject>Janus kinase 2</subject><subject>Kinases</subject><subject>Maf Transcription Factors, Large - genetics</subject><subject>Maf Transcription Factors, Large - metabolism</subject><subject>Male</subject><subject>Maturation</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular modelling</subject><subject>Newborn babies</subject><subject>Pancreas</subject><subject>Pharmaceutical sciences</subject><subject>Phosphorylation</subject><subject>Pregnancy</subject><subject>Prolactin</subject><subject>Promoter Regions, Genetic</subject><subject>Rats</subject><subject>Receptors, Prolactin - genetics</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>Translocation</subject><subject>Urocortin</subject><subject>Vitamin D receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhi0EomXgDRBEYsMmg49vmWyQqhGXSkVsYG0dO3bJyBOndoLEa_EgPBOembRqESvf_vOf71g_IS-BroE38G4X5zRgWI9xcGsKVMBGPCLn0HJWK0b543v7M_Is5x2lkm-UekrOmASmGtGek-0X9BdVn6vkbuY-ua7yMVVjzNOAE4ZqTDH03iWc-jhU0VcjDja5crTVn9-1dSHk5-SJx5Ddi2Vdke8fP3zbfq6vvn663F5c1VYyNdUIsuto640x2KjGWZDYcuMVZ8Asp8hBgbWGtg1Q6ViBdZ65wmkdxbbhK_L65DuGmPUyf9YgJZecbcqyIpcnRRdxp8fU7zH90hF7fbyI6VpjKujBadt60ZUeRhovFN2g8JTbrqCazgJC8Xq_dJvN3nXWDVPC8MD04cvQ_9DX8acWwAUccd8uBinezC5Pet_nw4fh4OJ85Bai4bzlRfrmH-n_pxMnlU0x5-T8HQxQfcjEbZU-ZEIvmShlr-4Pcld0GwL-F4qstcw</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Eto, Koki</creator><creator>Nishimura, Wataru</creator><creator>Oishi, Hisashi</creator><creator>Udagawa, Haruhide</creator><creator>Kawaguchi, Miho</creator><creator>Hiramoto, Masaki</creator><creator>Fujiwara, Toshiyoshi</creator><creator>Takahashi, Satoru</creator><creator>Yasuda, Kazuki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140815</creationdate><title>MafA is required for postnatal proliferation of pancreatic β-cells</title><author>Eto, Koki ; Nishimura, Wataru ; Oishi, Hisashi ; Udagawa, Haruhide ; Kawaguchi, Miho ; Hiramoto, Masaki ; Fujiwara, Toshiyoshi ; Takahashi, Satoru ; Yasuda, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a15dd09fbbba767ec15a93bf63212c30a3161ccb097105e2538ef2e674ce0a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adults</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Cyclin D2</topic><topic>Cyclin D2 - genetics</topic><topic>Cyclin D2 - metabolism</topic><topic>Dentistry</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>Embryology</topic><topic>Endocrinology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose transporter</topic><topic>Growth hormones</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Islets of Langerhans - metabolism</topic><topic>Janus kinase 2</topic><topic>Kinases</topic><topic>Maf Transcription Factors, Large - genetics</topic><topic>Maf Transcription Factors, Large - metabolism</topic><topic>Male</topic><topic>Maturation</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular modelling</topic><topic>Newborn babies</topic><topic>Pancreas</topic><topic>Pharmaceutical sciences</topic><topic>Phosphorylation</topic><topic>Pregnancy</topic><topic>Prolactin</topic><topic>Promoter Regions, Genetic</topic><topic>Rats</topic><topic>Receptors, Prolactin - genetics</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>Translocation</topic><topic>Urocortin</topic><topic>Vitamin D receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eto, Koki</creatorcontrib><creatorcontrib>Nishimura, Wataru</creatorcontrib><creatorcontrib>Oishi, Hisashi</creatorcontrib><creatorcontrib>Udagawa, Haruhide</creatorcontrib><creatorcontrib>Kawaguchi, Miho</creatorcontrib><creatorcontrib>Hiramoto, Masaki</creatorcontrib><creatorcontrib>Fujiwara, Toshiyoshi</creatorcontrib><creatorcontrib>Takahashi, Satoru</creatorcontrib><creatorcontrib>Yasuda, Kazuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eto, Koki</au><au>Nishimura, Wataru</au><au>Oishi, Hisashi</au><au>Udagawa, Haruhide</au><au>Kawaguchi, Miho</au><au>Hiramoto, Masaki</au><au>Fujiwara, Toshiyoshi</au><au>Takahashi, Satoru</au><au>Yasuda, Kazuki</au><au>Abderrahmani, Amar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MafA is required for postnatal proliferation of pancreatic β-cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-15</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e104184</spage><epage>e104184</epage><pages>e104184-e104184</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25126749</pmid><doi>10.1371/journal.pone.0104184</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-08, Vol.9 (8), p.e104184-e104184 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1553532855 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adults Animals Animals, Newborn Binding sites Biology and Life Sciences Cell division Cell growth Cell Line Cell lines Cell Proliferation Cyclin D2 Cyclin D2 - genetics Cyclin D2 - metabolism Dentistry Deoxyribonucleic acid Diabetes DNA Embryology Endocrinology Gene Expression Gene Expression Profiling Gene Expression Regulation Genes, Reporter Glucose Glucose metabolism Glucose transporter Growth hormones Homeostasis Humans Insulin Insulin resistance Insulin-Secreting Cells - metabolism Islets of Langerhans - metabolism Janus kinase 2 Kinases Maf Transcription Factors, Large - genetics Maf Transcription Factors, Large - metabolism Male Maturation Medicine Medicine and Health Sciences Metabolic disorders Metabolism Mice Mice, Knockout Molecular modelling Newborn babies Pancreas Pharmaceutical sciences Phosphorylation Pregnancy Prolactin Promoter Regions, Genetic Rats Receptors, Prolactin - genetics Rodents Signal Transduction Signaling Stem cell transplantation Stem cells Transcription factors Transcriptome Translocation Urocortin Vitamin D receptors |
title | MafA is required for postnatal proliferation of pancreatic β-cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MafA%20is%20required%20for%20postnatal%20proliferation%20of%20pancreatic%20%CE%B2-cells&rft.jtitle=PloS%20one&rft.au=Eto,%20Koki&rft.date=2014-08-15&rft.volume=9&rft.issue=8&rft.spage=e104184&rft.epage=e104184&rft.pages=e104184-e104184&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0104184&rft_dat=%3Cproquest_plos_%3E1554473393%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553532855&rft_id=info:pmid/25126749&rft_doaj_id=oai_doaj_org_article_c9f4d253b5bf4608a4f03cdc52bdc1a1&rfr_iscdi=true |