Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ

Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e104592-e104592
Hauptverfasser: Nikhil, Kumar, Sharan, Shruti, Singh, Abhimanyu K, Chakraborty, Ajanta, Roy, Partha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e104592
container_issue 8
container_start_page e104592
container_title PloS one
container_volume 9
creator Nikhil, Kumar
Sharan, Shruti
Singh, Abhimanyu K
Chakraborty, Ajanta
Roy, Partha
description Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway.
doi_str_mv 10.1371/journal.pone.0104592
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1553136812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c0b65f71ac544d788a595b831c9bfe3</doaj_id><sourcerecordid>3402250611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-3b217389911fa38f5dea3f157d8d81b71f3b170aa71d998839b798014890bd653</originalsourceid><addsrcrecordid>eNptUsFu1DAUtBCIloU_QBCJC5csfnEc2xyQVlWBSpWoEJwt23G2XiX2Yjsr9bv4D76pCZtWLeLkp-eZ8ZvnQeg14DUQBh92YYxe9et98HaNAddUVE_QKQhSlU2FydMH9Ql6kdIOY0p40zxHJxUFEHXTnKJh47MzyhsbC2WyO7jsbCpCV-yzjSFl12vrbelSyNcumBvlVbaFCX43bufK-UJHq1IuFhVj-z59nPqH0B_sYH2e1a6uNt___H6JnnWqT_bVcq7Qz8_nP86-lpffvlycbS5LQ6sml0RXwAgXAqBThHe0tYp0QFnLWw6aQUc0MKwUg1YIzonQTHAMNRdYtw0lK_T2qLvvQ5LLppIESgmQhkM1IS6OiDaondxHN6h4I4Ny8m8jxK1UcdpMb2VlsG5ox0AZWtct41xRQTUnYITuLJm0Pi2vjXqwrZksR9U_En1849213IaDrIEAn8ZfofeLQAy_RpuyHFya96i8DeNxbgYAzQx99w_0_-7qI8pMX5ii7e6HASzn9Nyx5JweuaRnor15aOSedBcXcgu3aMSr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553136812</pqid></control><display><type>article</type><title>Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nikhil, Kumar ; Sharan, Shruti ; Singh, Abhimanyu K ; Chakraborty, Ajanta ; Roy, Partha</creator><contributor>Reddy, Raju</contributor><creatorcontrib>Nikhil, Kumar ; Sharan, Shruti ; Singh, Abhimanyu K ; Chakraborty, Ajanta ; Roy, Partha ; Reddy, Raju</creatorcontrib><description>Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0104592</identifier><identifier>PMID: 25119466</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis of Variance ; Annexin A5 ; Annexin V ; Antagonists ; Anticancer properties ; Antineoplastic Agents - metabolism ; Antineoplastic Agents - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Azo Compounds ; Binding sites ; Biology and Life Sciences ; Biotechnology ; Blotting, Western ; Breast cancer ; Breast Neoplasms - drug therapy ; Cancer ; Cancer therapies ; Caspase ; Caspase 9 - metabolism ; Caspase-9 ; Cell death ; Cell growth ; Chemotherapy ; Cytotoxicity ; DNA Primers - genetics ; Endocrinology ; Female ; Flow Cytometry ; Fluorescent Antibody Technique ; Gene expression ; Humans ; Incubation ; Iodides ; Isothiocyanate ; Isothiocyanates - chemistry ; Isothiocyanates - pharmacology ; JNK protein ; Kinases ; Laboratories ; Ligands ; Luciferases ; Lung cancer ; MAP kinase ; MCF-7 Cells ; Medicine and Health Sciences ; Metabolism ; Molecular docking ; Molecular Structure ; PPAR gamma - antagonists &amp; inhibitors ; PPAR gamma - metabolism ; Propidium ; Propidium iodide ; Prostate ; Resveratrol ; Reverse Transcriptase Polymerase Chain Reaction ; Signal transduction ; siRNA ; Stilbenes - chemistry ; Stilbenes - pharmacology ; Transcription activation ; Tumor cell lines ; Tumorigenesis</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e104592-e104592</ispartof><rights>2014 Nikhil et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Nikhil et al 2014 Nikhil et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-3b217389911fa38f5dea3f157d8d81b71f3b170aa71d998839b798014890bd653</citedby><cites>FETCH-LOGICAL-c526t-3b217389911fa38f5dea3f157d8d81b71f3b170aa71d998839b798014890bd653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131888/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131888/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25119466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reddy, Raju</contributor><creatorcontrib>Nikhil, Kumar</creatorcontrib><creatorcontrib>Sharan, Shruti</creatorcontrib><creatorcontrib>Singh, Abhimanyu K</creatorcontrib><creatorcontrib>Chakraborty, Ajanta</creatorcontrib><creatorcontrib>Roy, Partha</creatorcontrib><title>Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway.</description><subject>Analysis of Variance</subject><subject>Annexin A5</subject><subject>Annexin V</subject><subject>Antagonists</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - metabolism</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Azo Compounds</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Blotting, Western</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Caspase</subject><subject>Caspase 9 - metabolism</subject><subject>Caspase-9</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Chemotherapy</subject><subject>Cytotoxicity</subject><subject>DNA Primers - genetics</subject><subject>Endocrinology</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Incubation</subject><subject>Iodides</subject><subject>Isothiocyanate</subject><subject>Isothiocyanates - chemistry</subject><subject>Isothiocyanates - pharmacology</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Luciferases</subject><subject>Lung cancer</subject><subject>MAP kinase</subject><subject>MCF-7 Cells</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Molecular docking</subject><subject>Molecular Structure</subject><subject>PPAR gamma - antagonists &amp; inhibitors</subject><subject>PPAR gamma - metabolism</subject><subject>Propidium</subject><subject>Propidium iodide</subject><subject>Prostate</subject><subject>Resveratrol</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Signal transduction</subject><subject>siRNA</subject><subject>Stilbenes - chemistry</subject><subject>Stilbenes - pharmacology</subject><subject>Transcription activation</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAUtBCIloU_QBCJC5csfnEc2xyQVlWBSpWoEJwt23G2XiX2Yjsr9bv4D76pCZtWLeLkp-eZ8ZvnQeg14DUQBh92YYxe9et98HaNAddUVE_QKQhSlU2FydMH9Ql6kdIOY0p40zxHJxUFEHXTnKJh47MzyhsbC2WyO7jsbCpCV-yzjSFl12vrbelSyNcumBvlVbaFCX43bufK-UJHq1IuFhVj-z59nPqH0B_sYH2e1a6uNt___H6JnnWqT_bVcq7Qz8_nP86-lpffvlycbS5LQ6sml0RXwAgXAqBThHe0tYp0QFnLWw6aQUc0MKwUg1YIzonQTHAMNRdYtw0lK_T2qLvvQ5LLppIESgmQhkM1IS6OiDaondxHN6h4I4Ny8m8jxK1UcdpMb2VlsG5ox0AZWtct41xRQTUnYITuLJm0Pi2vjXqwrZksR9U_En1849213IaDrIEAn8ZfofeLQAy_RpuyHFya96i8DeNxbgYAzQx99w_0_-7qI8pMX5ii7e6HASzn9Nyx5JweuaRnor15aOSedBcXcgu3aMSr</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Nikhil, Kumar</creator><creator>Sharan, Shruti</creator><creator>Singh, Abhimanyu K</creator><creator>Chakraborty, Ajanta</creator><creator>Roy, Partha</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140813</creationdate><title>Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ</title><author>Nikhil, Kumar ; Sharan, Shruti ; Singh, Abhimanyu K ; Chakraborty, Ajanta ; Roy, Partha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-3b217389911fa38f5dea3f157d8d81b71f3b170aa71d998839b798014890bd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of Variance</topic><topic>Annexin A5</topic><topic>Annexin V</topic><topic>Antagonists</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - metabolism</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Azo Compounds</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Blotting, Western</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Caspase</topic><topic>Caspase 9 - metabolism</topic><topic>Caspase-9</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Chemotherapy</topic><topic>Cytotoxicity</topic><topic>DNA Primers - genetics</topic><topic>Endocrinology</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Incubation</topic><topic>Iodides</topic><topic>Isothiocyanate</topic><topic>Isothiocyanates - chemistry</topic><topic>Isothiocyanates - pharmacology</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Luciferases</topic><topic>Lung cancer</topic><topic>MAP kinase</topic><topic>MCF-7 Cells</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Molecular docking</topic><topic>Molecular Structure</topic><topic>PPAR gamma - antagonists &amp; inhibitors</topic><topic>PPAR gamma - metabolism</topic><topic>Propidium</topic><topic>Propidium iodide</topic><topic>Prostate</topic><topic>Resveratrol</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Signal transduction</topic><topic>siRNA</topic><topic>Stilbenes - chemistry</topic><topic>Stilbenes - pharmacology</topic><topic>Transcription activation</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikhil, Kumar</creatorcontrib><creatorcontrib>Sharan, Shruti</creatorcontrib><creatorcontrib>Singh, Abhimanyu K</creatorcontrib><creatorcontrib>Chakraborty, Ajanta</creatorcontrib><creatorcontrib>Roy, Partha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikhil, Kumar</au><au>Sharan, Shruti</au><au>Singh, Abhimanyu K</au><au>Chakraborty, Ajanta</au><au>Roy, Partha</au><au>Reddy, Raju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e104592</spage><epage>e104592</epage><pages>e104592-e104592</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25119466</pmid><doi>10.1371/journal.pone.0104592</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e104592-e104592
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1553136812
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis of Variance
Annexin A5
Annexin V
Antagonists
Anticancer properties
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
Apoptosis
Apoptosis - drug effects
Azo Compounds
Binding sites
Biology and Life Sciences
Biotechnology
Blotting, Western
Breast cancer
Breast Neoplasms - drug therapy
Cancer
Cancer therapies
Caspase
Caspase 9 - metabolism
Caspase-9
Cell death
Cell growth
Chemotherapy
Cytotoxicity
DNA Primers - genetics
Endocrinology
Female
Flow Cytometry
Fluorescent Antibody Technique
Gene expression
Humans
Incubation
Iodides
Isothiocyanate
Isothiocyanates - chemistry
Isothiocyanates - pharmacology
JNK protein
Kinases
Laboratories
Ligands
Luciferases
Lung cancer
MAP kinase
MCF-7 Cells
Medicine and Health Sciences
Metabolism
Molecular docking
Molecular Structure
PPAR gamma - antagonists & inhibitors
PPAR gamma - metabolism
Propidium
Propidium iodide
Prostate
Resveratrol
Reverse Transcriptase Polymerase Chain Reaction
Signal transduction
siRNA
Stilbenes - chemistry
Stilbenes - pharmacology
Transcription activation
Tumor cell lines
Tumorigenesis
title Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anticancer%20activities%20of%20pterostilbene-isothiocyanate%20conjugate%20in%20breast%20cancer%20cells:%20involvement%20of%20PPAR%CE%B3&rft.jtitle=PloS%20one&rft.au=Nikhil,%20Kumar&rft.date=2014-08-13&rft.volume=9&rft.issue=8&rft.spage=e104592&rft.epage=e104592&rft.pages=e104592-e104592&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0104592&rft_dat=%3Cproquest_plos_%3E3402250611%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553136812&rft_id=info:pmid/25119466&rft_doaj_id=oai_doaj_org_article_2c0b65f71ac544d788a595b831c9bfe3&rfr_iscdi=true