Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel

Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e103879-e103879
Hauptverfasser: Amodeo, Giuseppe Federico, Scorciapino, Mariano Andrea, Messina, Angela, De Pinto, Vito, Ceccarelli, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e103879
container_issue 8
container_start_page e103879
container_title PloS one
container_volume 9
creator Amodeo, Giuseppe Federico
Scorciapino, Mariano Andrea
Messina, Angela
De Pinto, Vito
Ceccarelli, Matteo
description Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.
doi_str_mv 10.1371/journal.pone.0103879
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1550514326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416683568</galeid><doaj_id>oai_doaj_org_article_aaad390f03454faf80df6ff946c64f56</doaj_id><sourcerecordid>A416683568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</originalsourceid><addsrcrecordid>eNqNk9uKHCEQhpuQkN1M8gYhaQiE5GIm2tq2fRNYhhwGFhZyuhXbLqcd7HZW7SH7BnnsOKdlJuxFEFHKr_7SKivLXmI0w6TCH1Zu9IO0s7UbYIYwIryqH2WXuCbFlBWIPD7ZX2TPQlghVBLO2NPsoigRp7SsLrM_8076JbS5h2DaEULemhC9acZo3JD3rh2tjMkcwIKKZmPiXe50HjvI3RqGPMR0vLV0Yy-H3ASnne_Dkdk4G-US8hYS3MIQczkk4elRDnLVyWEA-zx7oqUN8OKwTrKfnz_9mH-dXt98WcyvrqeqKnmcFiXlXJVMVRrXUGBMGFWkRkgizivOKgzQEMUACKEVNEWtq6qhjWoYlhxaMsle73XX1gVxSGIQuCxRiSkpWCIWe6J1ciXW3vTS3wknjdgZnF8K6aNRFoSUsk3BNSK0pFpqjlrNtK4pU4zqcqv18RBtbHpoVUqAl_ZM9PxkMJ1Yuo2gmDLCiyTw7iDg3W0qTxS9CQqslQO4cXdvjHDNUqkn2Zt_0Idfd6CWMj3ADNqluGorKq4oZoyTMs1JNnuASqOF3qj047RJ9jOH92cOiYnwOy7lGIJYfP_2_-zNr3P27QnbgbSxC87ufmc4B-keVN6F4EHfJxkjsW2YYzbEtmHEoWGS26vTAt07HTuE_AU5KBMl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550514326</pqid></control><display><type>article</type><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo</creator><contributor>Dmitriev, Oleg Y.</contributor><creatorcontrib>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo ; Dmitriev, Oleg Y.</creatorcontrib><description>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0103879</identifier><identifier>PMID: 25084457</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Anions ; Automation ; Biology and Life Sciences ; Channel gating ; Charge distribution ; Conformation ; Electric potential ; Environmental science ; Geology ; Humans ; Ion charge ; Isoforms ; Localization ; Metabolites ; Mitochondria ; Mitochondrial Membrane Transport Proteins - chemistry ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Molecular biology ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; NMR ; Nuclear magnetic resonance ; Permeability ; Physical Sciences ; Plastic properties ; Plasticity ; Pore formation ; Pore-forming proteins ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein structure ; Proteins ; Residues ; Secondary structure ; Selectivity ; Sequence Homology, Amino Acid ; Structural analysis ; Theory ; Voltage ; Voltage-Dependent Anion Channel 1 - chemistry ; Voltage-Dependent Anion Channel 1 - genetics ; Voltage-Dependent Anion Channel 1 - metabolism ; Voltage-Dependent Anion Channels - chemistry ; Voltage-Dependent Anion Channels - genetics ; Voltage-Dependent Anion Channels - metabolism</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e103879-e103879</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Amodeo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Amodeo et al 2014 Amodeo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</citedby><cites>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146382/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146382/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25084457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dmitriev, Oleg Y.</contributor><creatorcontrib>Amodeo, Giuseppe Federico</creatorcontrib><creatorcontrib>Scorciapino, Mariano Andrea</creatorcontrib><creatorcontrib>Messina, Angela</creatorcontrib><creatorcontrib>De Pinto, Vito</creatorcontrib><creatorcontrib>Ceccarelli, Matteo</creatorcontrib><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Anions</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Channel gating</subject><subject>Charge distribution</subject><subject>Conformation</subject><subject>Electric potential</subject><subject>Environmental science</subject><subject>Geology</subject><subject>Humans</subject><subject>Ion charge</subject><subject>Isoforms</subject><subject>Localization</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - chemistry</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Pore formation</subject><subject>Pore-forming proteins</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Residues</subject><subject>Secondary structure</subject><subject>Selectivity</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structural analysis</subject><subject>Theory</subject><subject>Voltage</subject><subject>Voltage-Dependent Anion Channel 1 - chemistry</subject><subject>Voltage-Dependent Anion Channel 1 - genetics</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><subject>Voltage-Dependent Anion Channels - chemistry</subject><subject>Voltage-Dependent Anion Channels - genetics</subject><subject>Voltage-Dependent Anion Channels - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uKHCEQhpuQkN1M8gYhaQiE5GIm2tq2fRNYhhwGFhZyuhXbLqcd7HZW7SH7BnnsOKdlJuxFEFHKr_7SKivLXmI0w6TCH1Zu9IO0s7UbYIYwIryqH2WXuCbFlBWIPD7ZX2TPQlghVBLO2NPsoigRp7SsLrM_8076JbS5h2DaEULemhC9acZo3JD3rh2tjMkcwIKKZmPiXe50HjvI3RqGPMR0vLV0Yy-H3ASnne_Dkdk4G-US8hYS3MIQczkk4elRDnLVyWEA-zx7oqUN8OKwTrKfnz_9mH-dXt98WcyvrqeqKnmcFiXlXJVMVRrXUGBMGFWkRkgizivOKgzQEMUACKEVNEWtq6qhjWoYlhxaMsle73XX1gVxSGIQuCxRiSkpWCIWe6J1ciXW3vTS3wknjdgZnF8K6aNRFoSUsk3BNSK0pFpqjlrNtK4pU4zqcqv18RBtbHpoVUqAl_ZM9PxkMJ1Yuo2gmDLCiyTw7iDg3W0qTxS9CQqslQO4cXdvjHDNUqkn2Zt_0Idfd6CWMj3ADNqluGorKq4oZoyTMs1JNnuASqOF3qj047RJ9jOH92cOiYnwOy7lGIJYfP_2_-zNr3P27QnbgbSxC87ufmc4B-keVN6F4EHfJxkjsW2YYzbEtmHEoWGS26vTAt07HTuE_AU5KBMl</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Amodeo, Giuseppe Federico</creator><creator>Scorciapino, Mariano Andrea</creator><creator>Messina, Angela</creator><creator>De Pinto, Vito</creator><creator>Ceccarelli, Matteo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><author>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Anions</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Channel gating</topic><topic>Charge distribution</topic><topic>Conformation</topic><topic>Electric potential</topic><topic>Environmental science</topic><topic>Geology</topic><topic>Humans</topic><topic>Ion charge</topic><topic>Isoforms</topic><topic>Localization</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - chemistry</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Pore formation</topic><topic>Pore-forming proteins</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Residues</topic><topic>Secondary structure</topic><topic>Selectivity</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structural analysis</topic><topic>Theory</topic><topic>Voltage</topic><topic>Voltage-Dependent Anion Channel 1 - chemistry</topic><topic>Voltage-Dependent Anion Channel 1 - genetics</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><topic>Voltage-Dependent Anion Channels - chemistry</topic><topic>Voltage-Dependent Anion Channels - genetics</topic><topic>Voltage-Dependent Anion Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodeo, Giuseppe Federico</creatorcontrib><creatorcontrib>Scorciapino, Mariano Andrea</creatorcontrib><creatorcontrib>Messina, Angela</creatorcontrib><creatorcontrib>De Pinto, Vito</creatorcontrib><creatorcontrib>Ceccarelli, Matteo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodeo, Giuseppe Federico</au><au>Scorciapino, Mariano Andrea</au><au>Messina, Angela</au><au>De Pinto, Vito</au><au>Ceccarelli, Matteo</au><au>Dmitriev, Oleg Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e103879</spage><epage>e103879</epage><pages>e103879-e103879</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25084457</pmid><doi>10.1371/journal.pone.0103879</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e103879-e103879
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1550514326
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Amino Acid Sequence
Amino acids
Analysis
Anions
Automation
Biology and Life Sciences
Channel gating
Charge distribution
Conformation
Electric potential
Environmental science
Geology
Humans
Ion charge
Isoforms
Localization
Metabolites
Mitochondria
Mitochondrial Membrane Transport Proteins - chemistry
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Molecular biology
Molecular dynamics
Molecular Dynamics Simulation
Molecular Sequence Data
NMR
Nuclear magnetic resonance
Permeability
Physical Sciences
Plastic properties
Plasticity
Pore formation
Pore-forming proteins
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein structure
Proteins
Residues
Secondary structure
Selectivity
Sequence Homology, Amino Acid
Structural analysis
Theory
Voltage
Voltage-Dependent Anion Channel 1 - chemistry
Voltage-Dependent Anion Channel 1 - genetics
Voltage-Dependent Anion Channel 1 - metabolism
Voltage-Dependent Anion Channels - chemistry
Voltage-Dependent Anion Channels - genetics
Voltage-Dependent Anion Channels - metabolism
title Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charged%20residues%20distribution%20modulates%20selectivity%20of%20the%20open%20state%20of%20human%20isoforms%20of%20the%20voltage%20dependent%20anion-selective%20channel&rft.jtitle=PloS%20one&rft.au=Amodeo,%20Giuseppe%20Federico&rft.date=2014-08-01&rft.volume=9&rft.issue=8&rft.spage=e103879&rft.epage=e103879&rft.pages=e103879-e103879&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0103879&rft_dat=%3Cgale_plos_%3EA416683568%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550514326&rft_id=info:pmid/25084457&rft_galeid=A416683568&rft_doaj_id=oai_doaj_org_article_aaad390f03454faf80df6ff946c64f56&rfr_iscdi=true