Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel
Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role i...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-08, Vol.9 (8), p.e103879-e103879 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e103879 |
---|---|
container_issue | 8 |
container_start_page | e103879 |
container_title | PloS one |
container_volume | 9 |
creator | Amodeo, Giuseppe Federico Scorciapino, Mariano Andrea Messina, Angela De Pinto, Vito Ceccarelli, Matteo |
description | Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. |
doi_str_mv | 10.1371/journal.pone.0103879 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1550514326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416683568</galeid><doaj_id>oai_doaj_org_article_aaad390f03454faf80df6ff946c64f56</doaj_id><sourcerecordid>A416683568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</originalsourceid><addsrcrecordid>eNqNk9uKHCEQhpuQkN1M8gYhaQiE5GIm2tq2fRNYhhwGFhZyuhXbLqcd7HZW7SH7BnnsOKdlJuxFEFHKr_7SKivLXmI0w6TCH1Zu9IO0s7UbYIYwIryqH2WXuCbFlBWIPD7ZX2TPQlghVBLO2NPsoigRp7SsLrM_8076JbS5h2DaEULemhC9acZo3JD3rh2tjMkcwIKKZmPiXe50HjvI3RqGPMR0vLV0Yy-H3ASnne_Dkdk4G-US8hYS3MIQczkk4elRDnLVyWEA-zx7oqUN8OKwTrKfnz_9mH-dXt98WcyvrqeqKnmcFiXlXJVMVRrXUGBMGFWkRkgizivOKgzQEMUACKEVNEWtq6qhjWoYlhxaMsle73XX1gVxSGIQuCxRiSkpWCIWe6J1ciXW3vTS3wknjdgZnF8K6aNRFoSUsk3BNSK0pFpqjlrNtK4pU4zqcqv18RBtbHpoVUqAl_ZM9PxkMJ1Yuo2gmDLCiyTw7iDg3W0qTxS9CQqslQO4cXdvjHDNUqkn2Zt_0Idfd6CWMj3ADNqluGorKq4oZoyTMs1JNnuASqOF3qj047RJ9jOH92cOiYnwOy7lGIJYfP_2_-zNr3P27QnbgbSxC87ufmc4B-keVN6F4EHfJxkjsW2YYzbEtmHEoWGS26vTAt07HTuE_AU5KBMl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550514326</pqid></control><display><type>article</type><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo</creator><contributor>Dmitriev, Oleg Y.</contributor><creatorcontrib>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo ; Dmitriev, Oleg Y.</creatorcontrib><description>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0103879</identifier><identifier>PMID: 25084457</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Anions ; Automation ; Biology and Life Sciences ; Channel gating ; Charge distribution ; Conformation ; Electric potential ; Environmental science ; Geology ; Humans ; Ion charge ; Isoforms ; Localization ; Metabolites ; Mitochondria ; Mitochondrial Membrane Transport Proteins - chemistry ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Molecular biology ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; NMR ; Nuclear magnetic resonance ; Permeability ; Physical Sciences ; Plastic properties ; Plasticity ; Pore formation ; Pore-forming proteins ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein structure ; Proteins ; Residues ; Secondary structure ; Selectivity ; Sequence Homology, Amino Acid ; Structural analysis ; Theory ; Voltage ; Voltage-Dependent Anion Channel 1 - chemistry ; Voltage-Dependent Anion Channel 1 - genetics ; Voltage-Dependent Anion Channel 1 - metabolism ; Voltage-Dependent Anion Channels - chemistry ; Voltage-Dependent Anion Channels - genetics ; Voltage-Dependent Anion Channels - metabolism</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e103879-e103879</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Amodeo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Amodeo et al 2014 Amodeo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</citedby><cites>FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146382/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146382/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25084457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dmitriev, Oleg Y.</contributor><creatorcontrib>Amodeo, Giuseppe Federico</creatorcontrib><creatorcontrib>Scorciapino, Mariano Andrea</creatorcontrib><creatorcontrib>Messina, Angela</creatorcontrib><creatorcontrib>De Pinto, Vito</creatorcontrib><creatorcontrib>Ceccarelli, Matteo</creatorcontrib><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Anions</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Channel gating</subject><subject>Charge distribution</subject><subject>Conformation</subject><subject>Electric potential</subject><subject>Environmental science</subject><subject>Geology</subject><subject>Humans</subject><subject>Ion charge</subject><subject>Isoforms</subject><subject>Localization</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - chemistry</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Pore formation</subject><subject>Pore-forming proteins</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Residues</subject><subject>Secondary structure</subject><subject>Selectivity</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structural analysis</subject><subject>Theory</subject><subject>Voltage</subject><subject>Voltage-Dependent Anion Channel 1 - chemistry</subject><subject>Voltage-Dependent Anion Channel 1 - genetics</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><subject>Voltage-Dependent Anion Channels - chemistry</subject><subject>Voltage-Dependent Anion Channels - genetics</subject><subject>Voltage-Dependent Anion Channels - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uKHCEQhpuQkN1M8gYhaQiE5GIm2tq2fRNYhhwGFhZyuhXbLqcd7HZW7SH7BnnsOKdlJuxFEFHKr_7SKivLXmI0w6TCH1Zu9IO0s7UbYIYwIryqH2WXuCbFlBWIPD7ZX2TPQlghVBLO2NPsoigRp7SsLrM_8076JbS5h2DaEULemhC9acZo3JD3rh2tjMkcwIKKZmPiXe50HjvI3RqGPMR0vLV0Yy-H3ASnne_Dkdk4G-US8hYS3MIQczkk4elRDnLVyWEA-zx7oqUN8OKwTrKfnz_9mH-dXt98WcyvrqeqKnmcFiXlXJVMVRrXUGBMGFWkRkgizivOKgzQEMUACKEVNEWtq6qhjWoYlhxaMsle73XX1gVxSGIQuCxRiSkpWCIWe6J1ciXW3vTS3wknjdgZnF8K6aNRFoSUsk3BNSK0pFpqjlrNtK4pU4zqcqv18RBtbHpoVUqAl_ZM9PxkMJ1Yuo2gmDLCiyTw7iDg3W0qTxS9CQqslQO4cXdvjHDNUqkn2Zt_0Idfd6CWMj3ADNqluGorKq4oZoyTMs1JNnuASqOF3qj047RJ9jOH92cOiYnwOy7lGIJYfP_2_-zNr3P27QnbgbSxC87ufmc4B-keVN6F4EHfJxkjsW2YYzbEtmHEoWGS26vTAt07HTuE_AU5KBMl</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Amodeo, Giuseppe Federico</creator><creator>Scorciapino, Mariano Andrea</creator><creator>Messina, Angela</creator><creator>De Pinto, Vito</creator><creator>Ceccarelli, Matteo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</title><author>Amodeo, Giuseppe Federico ; Scorciapino, Mariano Andrea ; Messina, Angela ; De Pinto, Vito ; Ceccarelli, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-25488c56c7f19e211364c3900a08878671eeb3c6ee3347eb29f77b4bcb61a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Anions</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Channel gating</topic><topic>Charge distribution</topic><topic>Conformation</topic><topic>Electric potential</topic><topic>Environmental science</topic><topic>Geology</topic><topic>Humans</topic><topic>Ion charge</topic><topic>Isoforms</topic><topic>Localization</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - chemistry</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Pore formation</topic><topic>Pore-forming proteins</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Residues</topic><topic>Secondary structure</topic><topic>Selectivity</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structural analysis</topic><topic>Theory</topic><topic>Voltage</topic><topic>Voltage-Dependent Anion Channel 1 - chemistry</topic><topic>Voltage-Dependent Anion Channel 1 - genetics</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><topic>Voltage-Dependent Anion Channels - chemistry</topic><topic>Voltage-Dependent Anion Channels - genetics</topic><topic>Voltage-Dependent Anion Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodeo, Giuseppe Federico</creatorcontrib><creatorcontrib>Scorciapino, Mariano Andrea</creatorcontrib><creatorcontrib>Messina, Angela</creatorcontrib><creatorcontrib>De Pinto, Vito</creatorcontrib><creatorcontrib>Ceccarelli, Matteo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodeo, Giuseppe Federico</au><au>Scorciapino, Mariano Andrea</au><au>Messina, Angela</au><au>De Pinto, Vito</au><au>Ceccarelli, Matteo</au><au>Dmitriev, Oleg Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e103879</spage><epage>e103879</epage><pages>e103879-e103879</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25084457</pmid><doi>10.1371/journal.pone.0103879</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-08, Vol.9 (8), p.e103879-e103879 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1550514326 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Amino Acid Sequence Amino acids Analysis Anions Automation Biology and Life Sciences Channel gating Charge distribution Conformation Electric potential Environmental science Geology Humans Ion charge Isoforms Localization Metabolites Mitochondria Mitochondrial Membrane Transport Proteins - chemistry Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Molecular biology Molecular dynamics Molecular Dynamics Simulation Molecular Sequence Data NMR Nuclear magnetic resonance Permeability Physical Sciences Plastic properties Plasticity Pore formation Pore-forming proteins Protein Isoforms - chemistry Protein Isoforms - genetics Protein Isoforms - metabolism Protein structure Proteins Residues Secondary structure Selectivity Sequence Homology, Amino Acid Structural analysis Theory Voltage Voltage-Dependent Anion Channel 1 - chemistry Voltage-Dependent Anion Channel 1 - genetics Voltage-Dependent Anion Channel 1 - metabolism Voltage-Dependent Anion Channels - chemistry Voltage-Dependent Anion Channels - genetics Voltage-Dependent Anion Channels - metabolism |
title | Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charged%20residues%20distribution%20modulates%20selectivity%20of%20the%20open%20state%20of%20human%20isoforms%20of%20the%20voltage%20dependent%20anion-selective%20channel&rft.jtitle=PloS%20one&rft.au=Amodeo,%20Giuseppe%20Federico&rft.date=2014-08-01&rft.volume=9&rft.issue=8&rft.spage=e103879&rft.epage=e103879&rft.pages=e103879-e103879&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0103879&rft_dat=%3Cgale_plos_%3EA416683568%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550514326&rft_id=info:pmid/25084457&rft_galeid=A416683568&rft_doaj_id=oai_doaj_org_article_aaad390f03454faf80df6ff946c64f56&rfr_iscdi=true |