The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen
Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, wh...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-07, Vol.9 (7), p.e103314-e103314 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e103314 |
---|---|
container_issue | 7 |
container_start_page | e103314 |
container_title | PloS one |
container_volume | 9 |
creator | Chapman, Rosamund Bourn, William R Shephard, Enid Stutz, Helen Douglass, Nicola Mgwebi, Thandi Meyers, Ann Chin'ombe, Nyasha Williamson, Anna-Lise |
description | Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge. |
doi_str_mv | 10.1371/journal.pone.0103314 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1548413582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417844229</galeid><doaj_id>oai_doaj_org_article_88b4227fa0fd4e378189e633d326ac10</doaj_id><sourcerecordid>A417844229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-7cc0b159fabed1b05bc08cba6dce75fecbcf5cd222cc17fb3dd7f57f312873223</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3LX6D0QDguhFaz7m80ZYi3YLCwu67m3IJCdtykzSnWSW-u9N29mlI3shuUg4ed43OSc5SfKW4BlhBfmycX1nRTPbOgszTDBjJH2WnJOK0WlOMXt-sj5LXnm_wThjZZ6_TM5ohnNSZOw82d2sAfUekNNImQ5kAIXg3jV9MM6i4JDsQARAAvkg6iYurEKmbXvrVmCNRFHj2tpYYQP6Nl8g2G078N7YVdS0ThltouXl8nZK0ELEoA0mKl8nL7RoPLwZ5kny-8f3m_nl9Op6sZxfXE1lkZVhWkiJa5JVWtSgSI2zWuJS1iJXEopMg6ylzqSilEpJCl0zpQqdFZoRWhaMUjZJ3h99t43zfCia5yRLy5SwrNwTyyOhnNjwbWda0f3hThh-CLhuxUUXjGyAl2WdUlpogbVKgRUlKSvIGVOM5kLGN5gkX4fT-rqFeEcbOtGMTMc71qz5yt3zlBCSHQw-DQadu-vBB94aL6FphAXXH-5dUUwrTCL64R_06ewGaiViAsZqF8-Ve1N-kZKiTGNCVaRmT1BxKGiNjD9MmxgfCT6PBJEJsAsr0XvPl79-_j97fTtmP56waxBNWPvhN_oxmB5B2TnvO9CPRSaY7xvkoRp83yB8aJAoe3f6QI-ih45gfwEcqAtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548413582</pqid></control><display><type>article</type><title>The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chapman, Rosamund ; Bourn, William R ; Shephard, Enid ; Stutz, Helen ; Douglass, Nicola ; Mgwebi, Thandi ; Meyers, Ann ; Chin'ombe, Nyasha ; Williamson, Anna-Lise</creator><contributor>Tyagi, Anil Kumar</contributor><creatorcontrib>Chapman, Rosamund ; Bourn, William R ; Shephard, Enid ; Stutz, Helen ; Douglass, Nicola ; Mgwebi, Thandi ; Meyers, Ann ; Chin'ombe, Nyasha ; Williamson, Anna-Lise ; Tyagi, Anil Kumar</creatorcontrib><description>Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0103314</identifier><identifier>PMID: 25061753</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AIDS vaccines ; Animals ; Antigens ; Bacillus Calmette-Guerin vaccine ; Bacteria ; BCG ; Biological evolution ; Biology and Life Sciences ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; Cellular manufacture ; Chapman, William R ; Cloning ; Directed evolution ; Directed Molecular Evolution ; Evolution ; Evolutionary genetics ; Female ; Fluorescence ; gag Gene Products, Human Immunodeficiency Virus - genetics ; gag Gene Products, Human Immunodeficiency Virus - immunology ; Gag protein ; Genomic instability ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Growth rate ; Health sciences ; HIV ; HIV antigens ; Human immunodeficiency virus ; Immune response ; Immune response (cell-mediated) ; Immunogenicity ; Immunology ; Infections ; Infectious diseases ; Laboratories ; Lymphocytes ; Lymphocytes T ; Medical research ; Medicine ; Metabolism ; Mice ; Mice, Inbred BALB C ; Mutation ; Mycobacterium bovis ; Mycobacterium bovis - genetics ; Mycobacterium bovis - immunology ; Production costs ; Proteins ; Researchers ; Splenocytes ; Stability ; T cell receptors ; T cells ; Tropical diseases ; Tuberculosis ; Vaccines, Synthetic - genetics ; Vaccines, Synthetic - immunology ; Virology ; Viruses</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e103314-e103314</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Chapman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Chapman et al 2014 Chapman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-7cc0b159fabed1b05bc08cba6dce75fecbcf5cd222cc17fb3dd7f57f312873223</citedby><cites>FETCH-LOGICAL-c758t-7cc0b159fabed1b05bc08cba6dce75fecbcf5cd222cc17fb3dd7f57f312873223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111510/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111510/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25061753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tyagi, Anil Kumar</contributor><creatorcontrib>Chapman, Rosamund</creatorcontrib><creatorcontrib>Bourn, William R</creatorcontrib><creatorcontrib>Shephard, Enid</creatorcontrib><creatorcontrib>Stutz, Helen</creatorcontrib><creatorcontrib>Douglass, Nicola</creatorcontrib><creatorcontrib>Mgwebi, Thandi</creatorcontrib><creatorcontrib>Meyers, Ann</creatorcontrib><creatorcontrib>Chin'ombe, Nyasha</creatorcontrib><creatorcontrib>Williamson, Anna-Lise</creatorcontrib><title>The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.</description><subject>AIDS vaccines</subject><subject>Animals</subject><subject>Antigens</subject><subject>Bacillus Calmette-Guerin vaccine</subject><subject>Bacteria</subject><subject>BCG</subject><subject>Biological evolution</subject><subject>Biology and Life Sciences</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cellular manufacture</subject><subject>Chapman, William R</subject><subject>Cloning</subject><subject>Directed evolution</subject><subject>Directed Molecular Evolution</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Female</subject><subject>Fluorescence</subject><subject>gag Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>gag Gene Products, Human Immunodeficiency Virus - immunology</subject><subject>Gag protein</subject><subject>Genomic instability</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Growth rate</subject><subject>Health sciences</subject><subject>HIV</subject><subject>HIV antigens</subject><subject>Human immunodeficiency virus</subject><subject>Immune response</subject><subject>Immune response (cell-mediated)</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mutation</subject><subject>Mycobacterium bovis</subject><subject>Mycobacterium bovis - genetics</subject><subject>Mycobacterium bovis - immunology</subject><subject>Production costs</subject><subject>Proteins</subject><subject>Researchers</subject><subject>Splenocytes</subject><subject>Stability</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>Tropical diseases</subject><subject>Tuberculosis</subject><subject>Vaccines, Synthetic - genetics</subject><subject>Vaccines, Synthetic - immunology</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3LX6D0QDguhFaz7m80ZYi3YLCwu67m3IJCdtykzSnWSW-u9N29mlI3shuUg4ed43OSc5SfKW4BlhBfmycX1nRTPbOgszTDBjJH2WnJOK0WlOMXt-sj5LXnm_wThjZZ6_TM5ohnNSZOw82d2sAfUekNNImQ5kAIXg3jV9MM6i4JDsQARAAvkg6iYurEKmbXvrVmCNRFHj2tpYYQP6Nl8g2G078N7YVdS0ThltouXl8nZK0ELEoA0mKl8nL7RoPLwZ5kny-8f3m_nl9Op6sZxfXE1lkZVhWkiJa5JVWtSgSI2zWuJS1iJXEopMg6ylzqSilEpJCl0zpQqdFZoRWhaMUjZJ3h99t43zfCia5yRLy5SwrNwTyyOhnNjwbWda0f3hThh-CLhuxUUXjGyAl2WdUlpogbVKgRUlKSvIGVOM5kLGN5gkX4fT-rqFeEcbOtGMTMc71qz5yt3zlBCSHQw-DQadu-vBB94aL6FphAXXH-5dUUwrTCL64R_06ewGaiViAsZqF8-Ve1N-kZKiTGNCVaRmT1BxKGiNjD9MmxgfCT6PBJEJsAsr0XvPl79-_j97fTtmP56waxBNWPvhN_oxmB5B2TnvO9CPRSaY7xvkoRp83yB8aJAoe3f6QI-ih45gfwEcqAtg</recordid><startdate>20140725</startdate><enddate>20140725</enddate><creator>Chapman, Rosamund</creator><creator>Bourn, William R</creator><creator>Shephard, Enid</creator><creator>Stutz, Helen</creator><creator>Douglass, Nicola</creator><creator>Mgwebi, Thandi</creator><creator>Meyers, Ann</creator><creator>Chin'ombe, Nyasha</creator><creator>Williamson, Anna-Lise</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140725</creationdate><title>The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen</title><author>Chapman, Rosamund ; Bourn, William R ; Shephard, Enid ; Stutz, Helen ; Douglass, Nicola ; Mgwebi, Thandi ; Meyers, Ann ; Chin'ombe, Nyasha ; Williamson, Anna-Lise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-7cc0b159fabed1b05bc08cba6dce75fecbcf5cd222cc17fb3dd7f57f312873223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AIDS vaccines</topic><topic>Animals</topic><topic>Antigens</topic><topic>Bacillus Calmette-Guerin vaccine</topic><topic>Bacteria</topic><topic>BCG</topic><topic>Biological evolution</topic><topic>Biology and Life Sciences</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cellular manufacture</topic><topic>Chapman, William R</topic><topic>Cloning</topic><topic>Directed evolution</topic><topic>Directed Molecular Evolution</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Female</topic><topic>Fluorescence</topic><topic>gag Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>gag Gene Products, Human Immunodeficiency Virus - immunology</topic><topic>Gag protein</topic><topic>Genomic instability</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Growth rate</topic><topic>Health sciences</topic><topic>HIV</topic><topic>HIV antigens</topic><topic>Human immunodeficiency virus</topic><topic>Immune response</topic><topic>Immune response (cell-mediated)</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mutation</topic><topic>Mycobacterium bovis</topic><topic>Mycobacterium bovis - genetics</topic><topic>Mycobacterium bovis - immunology</topic><topic>Production costs</topic><topic>Proteins</topic><topic>Researchers</topic><topic>Splenocytes</topic><topic>Stability</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>Tropical diseases</topic><topic>Tuberculosis</topic><topic>Vaccines, Synthetic - genetics</topic><topic>Vaccines, Synthetic - immunology</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Rosamund</creatorcontrib><creatorcontrib>Bourn, William R</creatorcontrib><creatorcontrib>Shephard, Enid</creatorcontrib><creatorcontrib>Stutz, Helen</creatorcontrib><creatorcontrib>Douglass, Nicola</creatorcontrib><creatorcontrib>Mgwebi, Thandi</creatorcontrib><creatorcontrib>Meyers, Ann</creatorcontrib><creatorcontrib>Chin'ombe, Nyasha</creatorcontrib><creatorcontrib>Williamson, Anna-Lise</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Rosamund</au><au>Bourn, William R</au><au>Shephard, Enid</au><au>Stutz, Helen</au><au>Douglass, Nicola</au><au>Mgwebi, Thandi</au><au>Meyers, Ann</au><au>Chin'ombe, Nyasha</au><au>Williamson, Anna-Lise</au><au>Tyagi, Anil Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-25</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e103314</spage><epage>e103314</epage><pages>e103314-e103314</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25061753</pmid><doi>10.1371/journal.pone.0103314</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-07, Vol.9 (7), p.e103314-e103314 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1548413582 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | AIDS vaccines Animals Antigens Bacillus Calmette-Guerin vaccine Bacteria BCG Biological evolution Biology and Life Sciences CD4 antigen CD4-Positive T-Lymphocytes - immunology CD8 antigen CD8-Positive T-Lymphocytes - immunology Cellular manufacture Chapman, William R Cloning Directed evolution Directed Molecular Evolution Evolution Evolutionary genetics Female Fluorescence gag Gene Products, Human Immunodeficiency Virus - genetics gag Gene Products, Human Immunodeficiency Virus - immunology Gag protein Genomic instability Green fluorescent protein Green Fluorescent Proteins - genetics Growth rate Health sciences HIV HIV antigens Human immunodeficiency virus Immune response Immune response (cell-mediated) Immunogenicity Immunology Infections Infectious diseases Laboratories Lymphocytes Lymphocytes T Medical research Medicine Metabolism Mice Mice, Inbred BALB C Mutation Mycobacterium bovis Mycobacterium bovis - genetics Mycobacterium bovis - immunology Production costs Proteins Researchers Splenocytes Stability T cell receptors T cells Tropical diseases Tuberculosis Vaccines, Synthetic - genetics Vaccines, Synthetic - immunology Virology Viruses |
title | The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20directed%20evolution%20to%20create%20a%20stable%20and%20immunogenic%20recombinant%20BCG%20expressing%20a%20modified%20HIV-1%20Gag%20antigen&rft.jtitle=PloS%20one&rft.au=Chapman,%20Rosamund&rft.date=2014-07-25&rft.volume=9&rft.issue=7&rft.spage=e103314&rft.epage=e103314&rft.pages=e103314-e103314&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0103314&rft_dat=%3Cgale_plos_%3EA417844229%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548413582&rft_id=info:pmid/25061753&rft_galeid=A417844229&rft_doaj_id=oai_doaj_org_article_88b4227fa0fd4e378189e633d326ac10&rfr_iscdi=true |