Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes

Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-07, Vol.9 (7), p.e102825
Hauptverfasser: Lin, Yongxiang, Cheng, Ying, Jin, Jing, Jin, Xiaolei, Jiang, Haiyang, Yan, Hanwei, Cheng, Beijiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e102825
container_title PloS one
container_volume 9
creator Lin, Yongxiang
Cheng, Ying
Jin, Jing
Jin, Xiaolei
Jiang, Haiyang
Yan, Hanwei
Cheng, Beijiu
description Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.
doi_str_mv 10.1371/journal.pone.0102825
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1547308479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8fd33abd327949c386f86e3a0d91bd02</doaj_id><sourcerecordid>1548632652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-30051a61ad557cc5568962c2d9072351dfa23fd2f56cf1bb8910726f7846d21b3</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QGCJC5dd_BE7zgWpqqBUqsQFzpZjP-96cexgJ5X492SzadUiTrY88-bNe56qekvwlrCGfDqkKUcdtkOKsMUEU0n5s-qctIxuBMXs-aP7WfWqlAPGnEkhXlZnlOO6kZidV_4aYuoB2WkI3ujRp4h0tGgHEVBIpSDtHJgRjXtAcJfCtFCSQ3vQIyr7ZH6hMetYTPbDgjltxpQXhYJ8RAF2Uw_ldfXC6VDgzXpeVD-_fvlx9W1z-_365urydmM4FeOGzS6JFkRbzhtjOBeyFdRQ2-KGMk6s05Q5Sx0XxpGuky2ZAeEaWQtLSccuqvcn3WG2r9YtFUV43TAs66adGTcnhk36oIbse53_qKS9Wh5S3imdR28CKOksY7qzjDZt3Zp5fU4KYBrblnQW01nr89pt6nqwBuK8jPBE9CkS_V7t0p2qCeYcs1ng4yqQ0-8Jyqh6XwyEoCOkafEtBaOCH3t9-If6_-nqE8vk-fsyuAczBKtjcu6r1DE5ak3OXPbu8SAPRfdRYX8BBDXCIg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547308479</pqid></control><display><type>article</type><title>Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Yongxiang ; Cheng, Ying ; Jin, Jing ; Jin, Xiaolei ; Jiang, Haiyang ; Yan, Hanwei ; Cheng, Beijiu</creator><contributor>Robinson-Rechavi, Marc</contributor><creatorcontrib>Lin, Yongxiang ; Cheng, Ying ; Jin, Jing ; Jin, Xiaolei ; Jiang, Haiyang ; Yan, Hanwei ; Cheng, Beijiu ; Robinson-Rechavi, Marc</creatorcontrib><description>Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0102825</identifier><identifier>PMID: 25047803</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alfalfa ; Arabidopsis ; Biological evolution ; Biology ; Biology and Life Sciences ; Cajanus - genetics ; Cajanus cajan ; Conservation ; Dating techniques ; Developmental stages ; DNA-Binding Proteins - genetics ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Fabaceae - genetics ; Gene amplification ; Gene Duplication ; Gene expression ; Genes ; Genes, Plant ; Genome, Plant ; Genomes ; Genomics ; Glycine max - genetics ; Heat ; Heat shock ; Heat shock factors ; Heat shock proteins ; Heat Shock Transcription Factors ; Legumes ; Life sciences ; Lotus - genetics ; Medicago truncatula - genetics ; Oryza ; Physiology ; Polyploidy ; Reproduction (copying) ; Research and Analysis Methods ; Segments ; Signal transduction ; Species ; Stress response ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e102825</ispartof><rights>2014 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Lin et al 2014 Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-30051a61ad557cc5568962c2d9072351dfa23fd2f56cf1bb8910726f7846d21b3</citedby><cites>FETCH-LOGICAL-c526t-30051a61ad557cc5568962c2d9072351dfa23fd2f56cf1bb8910726f7846d21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25047803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robinson-Rechavi, Marc</contributor><creatorcontrib>Lin, Yongxiang</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Jin, Xiaolei</creatorcontrib><creatorcontrib>Jiang, Haiyang</creatorcontrib><creatorcontrib>Yan, Hanwei</creatorcontrib><creatorcontrib>Cheng, Beijiu</creatorcontrib><title>Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.</description><subject>Alfalfa</subject><subject>Arabidopsis</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cajanus - genetics</subject><subject>Cajanus cajan</subject><subject>Conservation</subject><subject>Dating techniques</subject><subject>Developmental stages</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fabaceae - genetics</subject><subject>Gene amplification</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycine max - genetics</subject><subject>Heat</subject><subject>Heat shock</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>Heat Shock Transcription Factors</subject><subject>Legumes</subject><subject>Life sciences</subject><subject>Lotus - genetics</subject><subject>Medicago truncatula - genetics</subject><subject>Oryza</subject><subject>Physiology</subject><subject>Polyploidy</subject><subject>Reproduction (copying)</subject><subject>Research and Analysis Methods</subject><subject>Segments</subject><subject>Signal transduction</subject><subject>Species</subject><subject>Stress response</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QGCJC5dd_BE7zgWpqqBUqsQFzpZjP-96cexgJ5X492SzadUiTrY88-bNe56qekvwlrCGfDqkKUcdtkOKsMUEU0n5s-qctIxuBMXs-aP7WfWqlAPGnEkhXlZnlOO6kZidV_4aYuoB2WkI3ujRp4h0tGgHEVBIpSDtHJgRjXtAcJfCtFCSQ3vQIyr7ZH6hMetYTPbDgjltxpQXhYJ8RAF2Uw_ldfXC6VDgzXpeVD-_fvlx9W1z-_365urydmM4FeOGzS6JFkRbzhtjOBeyFdRQ2-KGMk6s05Q5Sx0XxpGuky2ZAeEaWQtLSccuqvcn3WG2r9YtFUV43TAs66adGTcnhk36oIbse53_qKS9Wh5S3imdR28CKOksY7qzjDZt3Zp5fU4KYBrblnQW01nr89pt6nqwBuK8jPBE9CkS_V7t0p2qCeYcs1ng4yqQ0-8Jyqh6XwyEoCOkafEtBaOCH3t9-If6_-nqE8vk-fsyuAczBKtjcu6r1DE5ak3OXPbu8SAPRfdRYX8BBDXCIg</recordid><startdate>20140721</startdate><enddate>20140721</enddate><creator>Lin, Yongxiang</creator><creator>Cheng, Ying</creator><creator>Jin, Jing</creator><creator>Jin, Xiaolei</creator><creator>Jiang, Haiyang</creator><creator>Yan, Hanwei</creator><creator>Cheng, Beijiu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140721</creationdate><title>Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes</title><author>Lin, Yongxiang ; Cheng, Ying ; Jin, Jing ; Jin, Xiaolei ; Jiang, Haiyang ; Yan, Hanwei ; Cheng, Beijiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-30051a61ad557cc5568962c2d9072351dfa23fd2f56cf1bb8910726f7846d21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alfalfa</topic><topic>Arabidopsis</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cajanus - genetics</topic><topic>Cajanus cajan</topic><topic>Conservation</topic><topic>Dating techniques</topic><topic>Developmental stages</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fabaceae - genetics</topic><topic>Gene amplification</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycine max - genetics</topic><topic>Heat</topic><topic>Heat shock</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>Heat Shock Transcription Factors</topic><topic>Legumes</topic><topic>Life sciences</topic><topic>Lotus - genetics</topic><topic>Medicago truncatula - genetics</topic><topic>Oryza</topic><topic>Physiology</topic><topic>Polyploidy</topic><topic>Reproduction (copying)</topic><topic>Research and Analysis Methods</topic><topic>Segments</topic><topic>Signal transduction</topic><topic>Species</topic><topic>Stress response</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yongxiang</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Jin, Xiaolei</creatorcontrib><creatorcontrib>Jiang, Haiyang</creatorcontrib><creatorcontrib>Yan, Hanwei</creatorcontrib><creatorcontrib>Cheng, Beijiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yongxiang</au><au>Cheng, Ying</au><au>Jin, Jing</au><au>Jin, Xiaolei</au><au>Jiang, Haiyang</au><au>Yan, Hanwei</au><au>Cheng, Beijiu</au><au>Robinson-Rechavi, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-21</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e102825</spage><pages>e102825-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25047803</pmid><doi>10.1371/journal.pone.0102825</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-07, Vol.9 (7), p.e102825
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1547308479
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alfalfa
Arabidopsis
Biological evolution
Biology
Biology and Life Sciences
Cajanus - genetics
Cajanus cajan
Conservation
Dating techniques
Developmental stages
DNA-Binding Proteins - genetics
Evolution
Evolution, Molecular
Evolutionary genetics
Fabaceae - genetics
Gene amplification
Gene Duplication
Gene expression
Genes
Genes, Plant
Genome, Plant
Genomes
Genomics
Glycine max - genetics
Heat
Heat shock
Heat shock factors
Heat shock proteins
Heat Shock Transcription Factors
Legumes
Life sciences
Lotus - genetics
Medicago truncatula - genetics
Oryza
Physiology
Polyploidy
Reproduction (copying)
Research and Analysis Methods
Segments
Signal transduction
Species
Stress response
Transcription factors
Transcription Factors - genetics
title Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20duplication%20and%20gene%20loss%20affect%20the%20evolution%20of%20heat%20shock%20transcription%20factor%20genes%20in%20legumes&rft.jtitle=PloS%20one&rft.au=Lin,%20Yongxiang&rft.date=2014-07-21&rft.volume=9&rft.issue=7&rft.spage=e102825&rft.pages=e102825-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0102825&rft_dat=%3Cproquest_plos_%3E1548632652%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547308479&rft_id=info:pmid/25047803&rft_doaj_id=oai_doaj_org_article_8fd33abd327949c386f86e3a0d91bd02&rfr_iscdi=true