Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells

The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-07, Vol.9 (7), p.e102625-e102625
Hauptverfasser: Zekavati, Anna, Nasir, Asghar, Alcaraz, Amor, Aldrovandi, Maceler, Marsh, Phil, Norton, John D, Murphy, John J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e102625
container_issue 7
container_start_page e102625
container_title PloS one
container_volume 9
creator Zekavati, Anna
Nasir, Asghar
Alcaraz, Amor
Aldrovandi, Maceler
Marsh, Phil
Norton, John D
Murphy, John J
description The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.
doi_str_mv 10.1371/journal.pone.0102625
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1544513063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418635331</galeid><doaj_id>oai_doaj_org_article_cb91867ebd2146c78f1f2bd57f179eae</doaj_id><sourcerecordid>A418635331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-60ab48b18ac3d7b0b2ddcceb5f0da3008175a84ad28dd7ecc5730cd78a2733ff3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQkJwyOKPOM5eKm1XFFZa0ap8HLhYju1kXSX2YjuI_nucblrtoh5QDp7Yz7zOvJnJspcIzhBh6MO1G7wV3WzrrJ5BBHGJ6aPsGM0JzksMyeO9-Ch7FsI1hJRUZfk0O8IUogIjdpypSxdiHr2wQXqzjcYlTeB1O3RifAGuAWfLNQb91ZcFqG9A3GiQwrw2Vhnbgq13URsLfp5fknKNQAp70ZnWChvBGZC668Lz7EkjuqBfTOtJ9v3847fl53x98Wm1XKxzyWgV8xKKuqhqVAlJFKthjZWSUte0gUoQCCvEqKgKoXClFNNSUkagVKwSmBHSNOQke73T3XYu8MmgwBEtCooILEkiVjtCOXHNt970wt9wJwy_3XC-5cJHIzvNZT1HVcl0rTAqSsmqBjW4VpQ1iM210EnrdLptqHutpLbJxu5A9PDEmg1v3W9ewHlBaZEE3k0C3v0adIi8N2E0TFjthtvvpqiCjJYJffMP-nB1E9WKVICxjUv3ylGUL4pUDKGEoETNHqDSo3RvZOqmxqT9g4T3BwmJifpPbMUQAl99vfp_9uLHIft2j91o0cVNcN0w9l04BIsdKL0Lwevm3mQE-TgMd27wcRj4NAwp7dX-D7pPuut-8hfmfQMp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544513063</pqid></control><display><type>article</type><title>Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells</title><source>MEDLINE</source><source>Public Library of Science</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Zekavati, Anna ; Nasir, Asghar ; Alcaraz, Amor ; Aldrovandi, Maceler ; Marsh, Phil ; Norton, John D ; Murphy, John J</creator><creatorcontrib>Zekavati, Anna ; Nasir, Asghar ; Alcaraz, Amor ; Aldrovandi, Maceler ; Marsh, Phil ; Norton, John D ; Murphy, John J</creatorcontrib><description>The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0102625</identifier><identifier>PMID: 25014217</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3' Untranslated Regions ; Adenine ; Animals ; Apoptosis ; B cells ; B-Lymphocytes ; Biology and life sciences ; Butyrate Response Factor 1 - antagonists &amp; inhibitors ; Butyrate Response Factor 1 - genetics ; Butyrate Response Factor 1 - metabolism ; Cell Line, Tumor ; Chemical properties ; Datasets ; Degradation ; DNA microarrays ; Electrophoretic mobility ; Fibroblasts ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Genes, Reporter ; Genetic aspects ; Genetic Vectors ; HEK293 Cells ; Humans ; Immunology ; Infections ; Inflammatory diseases ; Lentivirus - genetics ; Lentivirus - metabolism ; Leukemia ; Luciferase ; Luciferases - genetics ; Luciferases - metabolism ; Lymphocytes B ; Lymphoma ; Mammals ; Medicine and Health Sciences ; Messenger RNA ; Mice ; Nuclear Proteins - antagonists &amp; inhibitors ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Pathogenesis ; Post-transcription ; Protein Binding ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Response Elements ; Ribonucleic acid ; RNA ; RNA Stability ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA-binding protein ; RNA-Binding Proteins - antagonists &amp; inhibitors ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Signal Transduction ; Target recognition ; Transcription (Genetics) ; Uridine ; Zinc ; Zinc finger proteins</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e102625-e102625</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zekavati et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zekavati et al 2014 Zekavati et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-60ab48b18ac3d7b0b2ddcceb5f0da3008175a84ad28dd7ecc5730cd78a2733ff3</citedby><cites>FETCH-LOGICAL-c758t-60ab48b18ac3d7b0b2ddcceb5f0da3008175a84ad28dd7ecc5730cd78a2733ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094554/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25014217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zekavati, Anna</creatorcontrib><creatorcontrib>Nasir, Asghar</creatorcontrib><creatorcontrib>Alcaraz, Amor</creatorcontrib><creatorcontrib>Aldrovandi, Maceler</creatorcontrib><creatorcontrib>Marsh, Phil</creatorcontrib><creatorcontrib>Norton, John D</creatorcontrib><creatorcontrib>Murphy, John J</creatorcontrib><title>Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.</description><subject>3' Untranslated Regions</subject><subject>Adenine</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>B cells</subject><subject>B-Lymphocytes</subject><subject>Biology and life sciences</subject><subject>Butyrate Response Factor 1 - antagonists &amp; inhibitors</subject><subject>Butyrate Response Factor 1 - genetics</subject><subject>Butyrate Response Factor 1 - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chemical properties</subject><subject>Datasets</subject><subject>Degradation</subject><subject>DNA microarrays</subject><subject>Electrophoretic mobility</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Genetic Vectors</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infections</subject><subject>Inflammatory diseases</subject><subject>Lentivirus - genetics</subject><subject>Lentivirus - metabolism</subject><subject>Leukemia</subject><subject>Luciferase</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Mammals</subject><subject>Medicine and Health Sciences</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Nuclear Proteins - antagonists &amp; inhibitors</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pathogenesis</subject><subject>Post-transcription</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Response Elements</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Target recognition</subject><subject>Transcription (Genetics)</subject><subject>Uridine</subject><subject>Zinc</subject><subject>Zinc finger proteins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQkJwyOKPOM5eKm1XFFZa0ap8HLhYju1kXSX2YjuI_nucblrtoh5QDp7Yz7zOvJnJspcIzhBh6MO1G7wV3WzrrJ5BBHGJ6aPsGM0JzksMyeO9-Ch7FsI1hJRUZfk0O8IUogIjdpypSxdiHr2wQXqzjcYlTeB1O3RifAGuAWfLNQb91ZcFqG9A3GiQwrw2Vhnbgq13URsLfp5fknKNQAp70ZnWChvBGZC668Lz7EkjuqBfTOtJ9v3847fl53x98Wm1XKxzyWgV8xKKuqhqVAlJFKthjZWSUte0gUoQCCvEqKgKoXClFNNSUkagVKwSmBHSNOQke73T3XYu8MmgwBEtCooILEkiVjtCOXHNt970wt9wJwy_3XC-5cJHIzvNZT1HVcl0rTAqSsmqBjW4VpQ1iM210EnrdLptqHutpLbJxu5A9PDEmg1v3W9ewHlBaZEE3k0C3v0adIi8N2E0TFjthtvvpqiCjJYJffMP-nB1E9WKVICxjUv3ylGUL4pUDKGEoETNHqDSo3RvZOqmxqT9g4T3BwmJifpPbMUQAl99vfp_9uLHIft2j91o0cVNcN0w9l04BIsdKL0Lwevm3mQE-TgMd27wcRj4NAwp7dX-D7pPuut-8hfmfQMp</recordid><startdate>20140711</startdate><enddate>20140711</enddate><creator>Zekavati, Anna</creator><creator>Nasir, Asghar</creator><creator>Alcaraz, Amor</creator><creator>Aldrovandi, Maceler</creator><creator>Marsh, Phil</creator><creator>Norton, John D</creator><creator>Murphy, John J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140711</creationdate><title>Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells</title><author>Zekavati, Anna ; Nasir, Asghar ; Alcaraz, Amor ; Aldrovandi, Maceler ; Marsh, Phil ; Norton, John D ; Murphy, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-60ab48b18ac3d7b0b2ddcceb5f0da3008175a84ad28dd7ecc5730cd78a2733ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3' Untranslated Regions</topic><topic>Adenine</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>B cells</topic><topic>B-Lymphocytes</topic><topic>Biology and life sciences</topic><topic>Butyrate Response Factor 1 - antagonists &amp; inhibitors</topic><topic>Butyrate Response Factor 1 - genetics</topic><topic>Butyrate Response Factor 1 - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chemical properties</topic><topic>Datasets</topic><topic>Degradation</topic><topic>DNA microarrays</topic><topic>Electrophoretic mobility</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Genetic Vectors</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infections</topic><topic>Inflammatory diseases</topic><topic>Lentivirus - genetics</topic><topic>Lentivirus - metabolism</topic><topic>Leukemia</topic><topic>Luciferase</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Mammals</topic><topic>Medicine and Health Sciences</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Nuclear Proteins - antagonists &amp; inhibitors</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pathogenesis</topic><topic>Post-transcription</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Response Elements</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Target recognition</topic><topic>Transcription (Genetics)</topic><topic>Uridine</topic><topic>Zinc</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zekavati, Anna</creatorcontrib><creatorcontrib>Nasir, Asghar</creatorcontrib><creatorcontrib>Alcaraz, Amor</creatorcontrib><creatorcontrib>Aldrovandi, Maceler</creatorcontrib><creatorcontrib>Marsh, Phil</creatorcontrib><creatorcontrib>Norton, John D</creatorcontrib><creatorcontrib>Murphy, John J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zekavati, Anna</au><au>Nasir, Asghar</au><au>Alcaraz, Amor</au><au>Aldrovandi, Maceler</au><au>Marsh, Phil</au><au>Norton, John D</au><au>Murphy, John J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-11</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e102625</spage><epage>e102625</epage><pages>e102625-e102625</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25014217</pmid><doi>10.1371/journal.pone.0102625</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-07, Vol.9 (7), p.e102625-e102625
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1544513063
source MEDLINE; Public Library of Science; Full-Text Journals in Chemistry (Open access); PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library
subjects 3' Untranslated Regions
Adenine
Animals
Apoptosis
B cells
B-Lymphocytes
Biology and life sciences
Butyrate Response Factor 1 - antagonists & inhibitors
Butyrate Response Factor 1 - genetics
Butyrate Response Factor 1 - metabolism
Cell Line, Tumor
Chemical properties
Datasets
Degradation
DNA microarrays
Electrophoretic mobility
Fibroblasts
Gene expression
Gene Expression Regulation, Neoplastic
Gene regulation
Genes, Reporter
Genetic aspects
Genetic Vectors
HEK293 Cells
Humans
Immunology
Infections
Inflammatory diseases
Lentivirus - genetics
Lentivirus - metabolism
Leukemia
Luciferase
Luciferases - genetics
Luciferases - metabolism
Lymphocytes B
Lymphoma
Mammals
Medicine and Health Sciences
Messenger RNA
Mice
Nuclear Proteins - antagonists & inhibitors
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Pathogenesis
Post-transcription
Protein Binding
Proteins
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Response Elements
Ribonucleic acid
RNA
RNA Stability
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA-binding protein
RNA-Binding Proteins - antagonists & inhibitors
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Signal Transduction
Target recognition
Transcription (Genetics)
Uridine
Zinc
Zinc finger proteins
title Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20regulation%20of%20BCL2%20mRNA%20by%20the%20RNA-binding%20protein%20ZFP36L1%20in%20malignant%20B%20cells&rft.jtitle=PloS%20one&rft.au=Zekavati,%20Anna&rft.date=2014-07-11&rft.volume=9&rft.issue=7&rft.spage=e102625&rft.epage=e102625&rft.pages=e102625-e102625&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0102625&rft_dat=%3Cgale_plos_%3EA418635331%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544513063&rft_id=info:pmid/25014217&rft_galeid=A418635331&rft_doaj_id=oai_doaj_org_article_cb91867ebd2146c78f1f2bd57f179eae&rfr_iscdi=true