Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data

During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-07, Vol.9 (7), p.e100864-e100864
Hauptverfasser: Bai, Yongsheng, Hassler, Justin, Ziyar, Ahdad, Li, Philip, Wright, Zachary, Menon, Rajasree, Omenn, Gilbert S, Cavalcoli, James D, Kaufman, Randal J, Sartor, Maureen A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e100864
container_issue 7
container_start_page e100864
container_title PloS one
container_volume 9
creator Bai, Yongsheng
Hassler, Justin
Ziyar, Ahdad
Li, Philip
Wright, Zachary
Menon, Rajasree
Omenn, Gilbert S
Cavalcoli, James D
Kaufman, Randal J
Sartor, Maureen A
description During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix "grep" command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.
doi_str_mv 10.1371/journal.pone.0100864
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1542870519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416968806</galeid><doaj_id>oai_doaj_org_article_8bd9eb17bd0d4aac91cfb6cdd5aa2b8f</doaj_id><sourcerecordid>A416968806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b7c74ef2a59af4a81660c838964ce836d762eab06a4a8ca3314e290e8fba35003</originalsourceid><addsrcrecordid>eNqNk91q3DAQhU1padJt36C0hkJpL7yVLFmWbwJL6M9CSCBpeyvG0tirYFsby07bt6-c3YR1yUUx2GLON2eskSaKXlOypCynn67d2HfQLLeuwyWhhEjBn0THtGBpIlLCnh6sj6IX3l8TkjEpxPPoKOVFEcTsOOrO3S02cWmd7SrXtzBY7eMWh40zcQjE1mA32MrqoLgudlVcY-daTH4FJe5cl2gI76A3sd82VqOJe6wD6-PR266OL89XyRXexAYGeBk9q6Dx-Gr_XUQ_vnz-fvotObv4uj5dnSVaFOmQlLnOOVYpZAVUHCQVgmjJZCG4RsmEyUWKUBIBQdTAGOWYFgRlVQLLCGGL6O3Od9s4r_at8opmPJU5ycLeF9F6RxgH12rb2xb6P8qBVXcB19cK-tCMBpUsTYElzUtDDAfQBdVVKbQxGUBayip4neyrjWWLRoeO9dDMTOdKZzeqdreKE8lFKoLBh71B725G9INqrdfYNNChG-_-mwlJicwD-u4f9PHd7akawgamow119WSqVpyKQkhJprLLR6jwGGytDveqsiE-S_g4SwjMgL-HGkbv1frq8v_Zi59z9v0Bu0Foho13zThdOT8H-Q7UvfO-x-qhyZSoaSzuu6GmsVD7sQhpbw4P6CHpfg7YX3VRCck</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542870519</pqid></control><display><type>article</type><title>Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bai, Yongsheng ; Hassler, Justin ; Ziyar, Ahdad ; Li, Philip ; Wright, Zachary ; Menon, Rajasree ; Omenn, Gilbert S ; Cavalcoli, James D ; Kaufman, Randal J ; Sartor, Maureen A</creator><contributor>Pain, Arnab</contributor><creatorcontrib>Bai, Yongsheng ; Hassler, Justin ; Ziyar, Ahdad ; Li, Philip ; Wright, Zachary ; Menon, Rajasree ; Omenn, Gilbert S ; Cavalcoli, James D ; Kaufman, Randal J ; Sartor, Maureen A ; Pain, Arnab</creatorcontrib><description>During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix "grep" command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0100864</identifier><identifier>PMID: 24991935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Base Sequence ; Bioinformatics ; Biology and Life Sciences ; Boundaries ; Breast cancer ; Cell Line ; Cell Line, Tumor ; Chromosome 17 ; Computational biology ; Cytosol ; DNA-Binding Proteins - genetics ; Embryo fibroblasts ; Embryos ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endoribonucleases - genetics ; Gene expression ; Gene regulation ; Genes ; Genomes ; Genomics ; Genomics - methods ; Heterozygote ; Humans ; Introns ; Medical research ; Medicine ; Methods ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein folding ; Protein-Serine-Threonine Kinases - genetics ; Regulatory Factor X Transcription Factors ; Ribonuclease ; Ribonucleic acid ; RNA ; RNA Splicing ; Software ; Splicing ; Stress ; Stresses ; Target recognition ; Transcription Factors - genetics ; UNIX ; X-Box Binding Protein 1</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e100864-e100864</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Bai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Bai et al 2014 Bai et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b7c74ef2a59af4a81660c838964ce836d762eab06a4a8ca3314e290e8fba35003</citedby><cites>FETCH-LOGICAL-c692t-b7c74ef2a59af4a81660c838964ce836d762eab06a4a8ca3314e290e8fba35003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24991935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pain, Arnab</contributor><creatorcontrib>Bai, Yongsheng</creatorcontrib><creatorcontrib>Hassler, Justin</creatorcontrib><creatorcontrib>Ziyar, Ahdad</creatorcontrib><creatorcontrib>Li, Philip</creatorcontrib><creatorcontrib>Wright, Zachary</creatorcontrib><creatorcontrib>Menon, Rajasree</creatorcontrib><creatorcontrib>Omenn, Gilbert S</creatorcontrib><creatorcontrib>Cavalcoli, James D</creatorcontrib><creatorcontrib>Kaufman, Randal J</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><title>Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix "grep" command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Boundaries</subject><subject>Breast cancer</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Chromosome 17</subject><subject>Computational biology</subject><subject>Cytosol</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryo fibroblasts</subject><subject>Embryos</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endoribonucleases - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Introns</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Sequence Data</subject><subject>Protein folding</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Regulatory Factor X Transcription Factors</subject><subject>Ribonuclease</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Splicing</subject><subject>Software</subject><subject>Splicing</subject><subject>Stress</subject><subject>Stresses</subject><subject>Target recognition</subject><subject>Transcription Factors - genetics</subject><subject>UNIX</subject><subject>X-Box Binding Protein 1</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk91q3DAQhU1padJt36C0hkJpL7yVLFmWbwJL6M9CSCBpeyvG0tirYFsby07bt6-c3YR1yUUx2GLON2eskSaKXlOypCynn67d2HfQLLeuwyWhhEjBn0THtGBpIlLCnh6sj6IX3l8TkjEpxPPoKOVFEcTsOOrO3S02cWmd7SrXtzBY7eMWh40zcQjE1mA32MrqoLgudlVcY-daTH4FJe5cl2gI76A3sd82VqOJe6wD6-PR266OL89XyRXexAYGeBk9q6Dx-Gr_XUQ_vnz-fvotObv4uj5dnSVaFOmQlLnOOVYpZAVUHCQVgmjJZCG4RsmEyUWKUBIBQdTAGOWYFgRlVQLLCGGL6O3Od9s4r_at8opmPJU5ycLeF9F6RxgH12rb2xb6P8qBVXcB19cK-tCMBpUsTYElzUtDDAfQBdVVKbQxGUBayip4neyrjWWLRoeO9dDMTOdKZzeqdreKE8lFKoLBh71B725G9INqrdfYNNChG-_-mwlJicwD-u4f9PHd7akawgamow119WSqVpyKQkhJprLLR6jwGGytDveqsiE-S_g4SwjMgL-HGkbv1frq8v_Zi59z9v0Bu0Foho13zThdOT8H-Q7UvfO-x-qhyZSoaSzuu6GmsVD7sQhpbw4P6CHpfg7YX3VRCck</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Bai, Yongsheng</creator><creator>Hassler, Justin</creator><creator>Ziyar, Ahdad</creator><creator>Li, Philip</creator><creator>Wright, Zachary</creator><creator>Menon, Rajasree</creator><creator>Omenn, Gilbert S</creator><creator>Cavalcoli, James D</creator><creator>Kaufman, Randal J</creator><creator>Sartor, Maureen A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140703</creationdate><title>Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data</title><author>Bai, Yongsheng ; Hassler, Justin ; Ziyar, Ahdad ; Li, Philip ; Wright, Zachary ; Menon, Rajasree ; Omenn, Gilbert S ; Cavalcoli, James D ; Kaufman, Randal J ; Sartor, Maureen A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b7c74ef2a59af4a81660c838964ce836d762eab06a4a8ca3314e290e8fba35003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Boundaries</topic><topic>Breast cancer</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Chromosome 17</topic><topic>Computational biology</topic><topic>Cytosol</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryo fibroblasts</topic><topic>Embryos</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endoribonucleases - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Introns</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Sequence Data</topic><topic>Protein folding</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Regulatory Factor X Transcription Factors</topic><topic>Ribonuclease</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Splicing</topic><topic>Software</topic><topic>Splicing</topic><topic>Stress</topic><topic>Stresses</topic><topic>Target recognition</topic><topic>Transcription Factors - genetics</topic><topic>UNIX</topic><topic>X-Box Binding Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yongsheng</creatorcontrib><creatorcontrib>Hassler, Justin</creatorcontrib><creatorcontrib>Ziyar, Ahdad</creatorcontrib><creatorcontrib>Li, Philip</creatorcontrib><creatorcontrib>Wright, Zachary</creatorcontrib><creatorcontrib>Menon, Rajasree</creatorcontrib><creatorcontrib>Omenn, Gilbert S</creatorcontrib><creatorcontrib>Cavalcoli, James D</creatorcontrib><creatorcontrib>Kaufman, Randal J</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yongsheng</au><au>Hassler, Justin</au><au>Ziyar, Ahdad</au><au>Li, Philip</au><au>Wright, Zachary</au><au>Menon, Rajasree</au><au>Omenn, Gilbert S</au><au>Cavalcoli, James D</au><au>Kaufman, Randal J</au><au>Sartor, Maureen A</au><au>Pain, Arnab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e100864</spage><epage>e100864</epage><pages>e100864-e100864</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix "grep" command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24991935</pmid><doi>10.1371/journal.pone.0100864</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-07, Vol.9 (7), p.e100864-e100864
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1542870519
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Animals
Base Sequence
Bioinformatics
Biology and Life Sciences
Boundaries
Breast cancer
Cell Line
Cell Line, Tumor
Chromosome 17
Computational biology
Cytosol
DNA-Binding Proteins - genetics
Embryo fibroblasts
Embryos
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Endoribonucleases - genetics
Gene expression
Gene regulation
Genes
Genomes
Genomics
Genomics - methods
Heterozygote
Humans
Introns
Medical research
Medicine
Methods
Mice
Mice, Knockout
Molecular Sequence Data
Protein folding
Protein-Serine-Threonine Kinases - genetics
Regulatory Factor X Transcription Factors
Ribonuclease
Ribonucleic acid
RNA
RNA Splicing
Software
Splicing
Stress
Stresses
Target recognition
Transcription Factors - genetics
UNIX
X-Box Binding Protein 1
title Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20bioinformatics%20method%20for%20identification%20of%20genome-wide%20non-canonical%20spliced%20regions%20using%20RNA-Seq%20data&rft.jtitle=PloS%20one&rft.au=Bai,%20Yongsheng&rft.date=2014-07-03&rft.volume=9&rft.issue=7&rft.spage=e100864&rft.epage=e100864&rft.pages=e100864-e100864&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0100864&rft_dat=%3Cgale_plos_%3EA416968806%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542870519&rft_id=info:pmid/24991935&rft_galeid=A416968806&rft_doaj_id=oai_doaj_org_article_8bd9eb17bd0d4aac91cfb6cdd5aa2b8f&rfr_iscdi=true