Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction
X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-07, Vol.9 (7), p.e100592-e100592 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e100592 |
---|---|
container_issue | 7 |
container_start_page | e100592 |
container_title | PloS one |
container_volume | 9 |
creator | Inouye, Hideyo Liu, Jiliang Makowski, Lee Palmisano, Marilena Burghammer, Manfred Riekel, Christian Kirschner, Daniel A |
description | X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS. |
doi_str_mv | 10.1371/journal.pone.0100592 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1542040501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416677973</galeid><doaj_id>oai_doaj_org_article_ae33914311a644ce9fa0f9ca513f2272</doaj_id><sourcerecordid>A416677973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c753t-61f95271fcc078abf073d34b13a4d69166d78a323148989f02dffadbab0145943</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEICEm0eKvxMkNUjUBmzQ0ia9b69SxW1ep3dlO1fLrcUg2rdMuUC7snDzndc7rc7LsJUZTTDn-uHKdt9BON86qKcIIFTV5lB3jmpJJSRB9fGd_lD0LYZUQWpXl0-yIsLpiiPLjLHzbq9bY3PkFWPMHonE2T-9xqXLrGmg_5BvwMG7BNvmq20W4jeVeLVJKSOtWQauafL7PgwRrjV3ku4mHfb420rvGaO1B9vrPsyca2qBejOtJ9uvL559n55PLq68XZ7PLieQFjZMS67ogHGspEa9grhGnDWVzTIE1ZY3LsklhSihmVV3VGpFGa2jmMEeYFTWjJ9nrQXfTuiBGv4LABSOIoQLhRFwMRONgJTberMHvhQMj_gWSKQJ8NLJVAhSlNWYUYygZk6rWgHQtocBUE8JJ0vo0ntbN16qRykYP7YHo4RdrlmLhtoIhzjmiSeDNIOBCNCJIE5VcSmetklFgWpB0TIJOB2h5T_t8din6GMIFp4hW27669-MfeXfdqRDF2gSp2hasct1gRMmqilQJfXsPfdiukVqkmxbGapcKkb2omLF0H5zXvK9j-gCVnkalTkjdqk2KHyScHiQkJqpdXEAXgrj48f3_2avfh-y7O-wytWdcBtd2fQ-GQ5ANYOrTELzSt85iJPphu3FD9MMmxmFLaa_u3vht0s100b9H4iMt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542040501</pqid></control><display><type>article</type><title>Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Inouye, Hideyo ; Liu, Jiliang ; Makowski, Lee ; Palmisano, Marilena ; Burghammer, Manfred ; Riekel, Christian ; Kirschner, Daniel A</creator><contributor>Gasset, Maria</contributor><creatorcontrib>Inouye, Hideyo ; Liu, Jiliang ; Makowski, Lee ; Palmisano, Marilena ; Burghammer, Manfred ; Riekel, Christian ; Kirschner, Daniel A ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Gasset, Maria</creatorcontrib><description>X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0100592</identifier><identifier>PMID: 24984037</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Angle of reflection ; Animals ; Architectural engineering ; Beams (radiation) ; Biology ; Biology and Life Sciences ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Central nervous system ; Computer engineering ; Deformation ; Electron density ; Fibers ; Glycoproteins ; Life Sciences ; Lipids ; Medicine and Health Sciences ; Membranes ; Mice ; Multilayers ; Myelin ; Myelin basic protein ; Myelin Basic Protein - chemistry ; Myelin Basic Protein - metabolism ; Myelin P0 protein ; Myelin P0 Protein - chemistry ; Myelin P0 Protein - metabolism ; Myelin proteins ; Myelin Sheath - chemistry ; Myelin Sheath - metabolism ; Nervous system ; Periodicity ; Phospholipids ; Proteins ; Raster scanning ; Research and analysis methods ; Scattering ; Studies ; X-Ray Diffraction ; Xenopus laevis</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e100592-e100592</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Inouye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 Inouye et al 2014 Inouye et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c753t-61f95271fcc078abf073d34b13a4d69166d78a323148989f02dffadbab0145943</citedby><cites>FETCH-LOGICAL-c753t-61f95271fcc078abf073d34b13a4d69166d78a323148989f02dffadbab0145943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24984037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01573038$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1352227$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Gasset, Maria</contributor><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Liu, Jiliang</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Palmisano, Marilena</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Riekel, Christian</creatorcontrib><creatorcontrib>Kirschner, Daniel A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.</description><subject>Analysis</subject><subject>Angle of reflection</subject><subject>Animals</subject><subject>Architectural engineering</subject><subject>Beams (radiation)</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Central nervous system</subject><subject>Computer engineering</subject><subject>Deformation</subject><subject>Electron density</subject><subject>Fibers</subject><subject>Glycoproteins</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Mice</subject><subject>Multilayers</subject><subject>Myelin</subject><subject>Myelin basic protein</subject><subject>Myelin Basic Protein - chemistry</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin P0 protein</subject><subject>Myelin P0 Protein - chemistry</subject><subject>Myelin P0 Protein - metabolism</subject><subject>Myelin proteins</subject><subject>Myelin Sheath - chemistry</subject><subject>Myelin Sheath - metabolism</subject><subject>Nervous system</subject><subject>Periodicity</subject><subject>Phospholipids</subject><subject>Proteins</subject><subject>Raster scanning</subject><subject>Research and analysis methods</subject><subject>Scattering</subject><subject>Studies</subject><subject>X-Ray Diffraction</subject><subject>Xenopus laevis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEICEm0eKvxMkNUjUBmzQ0ia9b69SxW1ep3dlO1fLrcUg2rdMuUC7snDzndc7rc7LsJUZTTDn-uHKdt9BON86qKcIIFTV5lB3jmpJJSRB9fGd_lD0LYZUQWpXl0-yIsLpiiPLjLHzbq9bY3PkFWPMHonE2T-9xqXLrGmg_5BvwMG7BNvmq20W4jeVeLVJKSOtWQauafL7PgwRrjV3ku4mHfb420rvGaO1B9vrPsyca2qBejOtJ9uvL559n55PLq68XZ7PLieQFjZMS67ogHGspEa9grhGnDWVzTIE1ZY3LsklhSihmVV3VGpFGa2jmMEeYFTWjJ9nrQXfTuiBGv4LABSOIoQLhRFwMRONgJTberMHvhQMj_gWSKQJ8NLJVAhSlNWYUYygZk6rWgHQtocBUE8JJ0vo0ntbN16qRykYP7YHo4RdrlmLhtoIhzjmiSeDNIOBCNCJIE5VcSmetklFgWpB0TIJOB2h5T_t8din6GMIFp4hW27669-MfeXfdqRDF2gSp2hasct1gRMmqilQJfXsPfdiukVqkmxbGapcKkb2omLF0H5zXvK9j-gCVnkalTkjdqk2KHyScHiQkJqpdXEAXgrj48f3_2avfh-y7O-wytWdcBtd2fQ-GQ5ANYOrTELzSt85iJPphu3FD9MMmxmFLaa_u3vht0s100b9H4iMt</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Inouye, Hideyo</creator><creator>Liu, Jiliang</creator><creator>Makowski, Lee</creator><creator>Palmisano, Marilena</creator><creator>Burghammer, Manfred</creator><creator>Riekel, Christian</creator><creator>Kirschner, Daniel A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140701</creationdate><title>Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction</title><author>Inouye, Hideyo ; Liu, Jiliang ; Makowski, Lee ; Palmisano, Marilena ; Burghammer, Manfred ; Riekel, Christian ; Kirschner, Daniel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c753t-61f95271fcc078abf073d34b13a4d69166d78a323148989f02dffadbab0145943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Angle of reflection</topic><topic>Animals</topic><topic>Architectural engineering</topic><topic>Beams (radiation)</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Central nervous system</topic><topic>Computer engineering</topic><topic>Deformation</topic><topic>Electron density</topic><topic>Fibers</topic><topic>Glycoproteins</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Mice</topic><topic>Multilayers</topic><topic>Myelin</topic><topic>Myelin basic protein</topic><topic>Myelin Basic Protein - chemistry</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin P0 protein</topic><topic>Myelin P0 Protein - chemistry</topic><topic>Myelin P0 Protein - metabolism</topic><topic>Myelin proteins</topic><topic>Myelin Sheath - chemistry</topic><topic>Myelin Sheath - metabolism</topic><topic>Nervous system</topic><topic>Periodicity</topic><topic>Phospholipids</topic><topic>Proteins</topic><topic>Raster scanning</topic><topic>Research and analysis methods</topic><topic>Scattering</topic><topic>Studies</topic><topic>X-Ray Diffraction</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Liu, Jiliang</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Palmisano, Marilena</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Riekel, Christian</creatorcontrib><creatorcontrib>Kirschner, Daniel A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inouye, Hideyo</au><au>Liu, Jiliang</au><au>Makowski, Lee</au><au>Palmisano, Marilena</au><au>Burghammer, Manfred</au><au>Riekel, Christian</au><au>Kirschner, Daniel A</au><au>Gasset, Maria</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e100592</spage><epage>e100592</epage><pages>e100592-e100592</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24984037</pmid><doi>10.1371/journal.pone.0100592</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-07, Vol.9 (7), p.e100592-e100592 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1542040501 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Angle of reflection Animals Architectural engineering Beams (radiation) Biology Biology and Life Sciences Cell Membrane - chemistry Cell Membrane - metabolism Central nervous system Computer engineering Deformation Electron density Fibers Glycoproteins Life Sciences Lipids Medicine and Health Sciences Membranes Mice Multilayers Myelin Myelin basic protein Myelin Basic Protein - chemistry Myelin Basic Protein - metabolism Myelin P0 protein Myelin P0 Protein - chemistry Myelin P0 Protein - metabolism Myelin proteins Myelin Sheath - chemistry Myelin Sheath - metabolism Nervous system Periodicity Phospholipids Proteins Raster scanning Research and analysis methods Scattering Studies X-Ray Diffraction Xenopus laevis |
title | Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myelin%20organization%20in%20the%20nodal,%20paranodal,%20and%20juxtaparanodal%20regions%20revealed%20by%20scanning%20x-ray%20microdiffraction&rft.jtitle=PloS%20one&rft.au=Inouye,%20Hideyo&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2014-07-01&rft.volume=9&rft.issue=7&rft.spage=e100592&rft.epage=e100592&rft.pages=e100592-e100592&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0100592&rft_dat=%3Cgale_plos_%3EA416677973%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542040501&rft_id=info:pmid/24984037&rft_galeid=A416677973&rft_doaj_id=oai_doaj_org_article_ae33914311a644ce9fa0f9ca513f2272&rfr_iscdi=true |