High-resolution modeling of transmembrane helical protein structures from distant homologues
Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we presen...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-05, Vol.10 (5), p.e1003636-e1003636 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003636 |
---|---|
container_issue | 5 |
container_start_page | e1003636 |
container_title | PLoS computational biology |
container_volume | 10 |
creator | Chen, Kuang-Yui M Sun, Jiaming Salvo, Jason S Baker, David Barth, Patrick |
description | Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues. |
doi_str_mv | 10.1371/journal.pcbi.1003636 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1536043735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382950567</galeid><doaj_id>oai_doaj_org_article_bac6d73fc45e41c390d0a3271b23ea8c</doaj_id><sourcerecordid>A382950567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</originalsourceid><addsrcrecordid>eNqVkk9v1DAQxSMEoqXwDRDkWA5ZxnbsZC9IVQV0pQok_tyQrIntZL1y4sV2EHx7vGxadY_IB1vj33tjP01RvCSwIqwhb3d-DhO61V51dkUAmGDiUXFOOGdVw3j7-MH5rHgW4y4zvF2Lp8UZrVteA-HnxY8bO2yrYKJ3c7J-KkevjbPTUPq-TAGnOJqxy7spt7mu0JX74JOxUxlTmFWas7bsgx9LbWPCKZVbP3rnh9nE58WTHl00L5b9ovj-4f2365vq9vPHzfXVbaUE8FR1HDujgQACougpEZziWrdNpymItQKmKKF0DbruBCBtAVBxg8CNUNhzdlG8PvrunY9yCSZKwpmAmuUAMrE5EtrjTu6DHTH8kR6t_FfwYZAYklXOyA6V0A3rVc1NTRTLbQEZbUhHmcFWZa93S7e5G41WZso5uRPT05vJbuXgf8kaGAEO2eByMQj-Z44pydFGZZzLKfv58G7asgzXB3R1RAfMT7NT77Ojykub0So_md7m-hVr6ZoDF00WvDkRZCaZ32nAOUa5-frlP9hPp2x9ZFXwMQbT3_-XgDzM413s8jCPcpnHLHv1MKt70d0Asr9TON8c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528340340</pqid></control><display><type>article</type><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick</creator><contributor>Schlessinger, Avner</contributor><creatorcontrib>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick ; Schlessinger, Avner</creatorcontrib><description>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003636</identifier><identifier>PMID: 24854015</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Amino Acid Sequence ; Biology and Life Sciences ; Computer Simulation ; Crystal structure ; Membrane proteins ; Membrane Proteins - chemistry ; Membrane Proteins - ultrastructure ; Methods ; Models, Chemical ; Molecular Docking Simulation - methods ; Molecular Sequence Data ; Physiological aspects ; Protein Conformation ; Protein folding ; Protein-protein interactions ; Receptor, Adenosine A2A - chemistry ; Receptor, Adenosine A2A - ultrastructure ; Receptors, CXCR4 - chemistry ; Receptors, CXCR4 - ultrastructure ; Sequence Homology, Amino Acid ; Synthetic biology</subject><ispartof>PLoS computational biology, 2014-05, Vol.10 (5), p.e1003636-e1003636</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Chen et al 2014 Chen et al</rights><rights>2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chen K-YM, Sun J, Salvo JS, Baker D, Barth P (2014) High-Resolution Modeling of Transmembrane Helical Protein Structures from Distant Homologues. PLoS Comput Biol 10(5): e1003636. doi:10.1371/journal.pcbi.1003636</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</citedby><cites>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031050/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031050/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24854015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schlessinger, Avner</contributor><creatorcontrib>Chen, Kuang-Yui M</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Salvo, Jason S</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Barth, Patrick</creatorcontrib><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</description><subject>Accuracy</subject><subject>Amino Acid Sequence</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - ultrastructure</subject><subject>Methods</subject><subject>Models, Chemical</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Sequence Data</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Protein folding</subject><subject>Protein-protein interactions</subject><subject>Receptor, Adenosine A2A - chemistry</subject><subject>Receptor, Adenosine A2A - ultrastructure</subject><subject>Receptors, CXCR4 - chemistry</subject><subject>Receptors, CXCR4 - ultrastructure</subject><subject>Sequence Homology, Amino Acid</subject><subject>Synthetic biology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk9v1DAQxSMEoqXwDRDkWA5ZxnbsZC9IVQV0pQok_tyQrIntZL1y4sV2EHx7vGxadY_IB1vj33tjP01RvCSwIqwhb3d-DhO61V51dkUAmGDiUXFOOGdVw3j7-MH5rHgW4y4zvF2Lp8UZrVteA-HnxY8bO2yrYKJ3c7J-KkevjbPTUPq-TAGnOJqxy7spt7mu0JX74JOxUxlTmFWas7bsgx9LbWPCKZVbP3rnh9nE58WTHl00L5b9ovj-4f2365vq9vPHzfXVbaUE8FR1HDujgQACougpEZziWrdNpymItQKmKKF0DbruBCBtAVBxg8CNUNhzdlG8PvrunY9yCSZKwpmAmuUAMrE5EtrjTu6DHTH8kR6t_FfwYZAYklXOyA6V0A3rVc1NTRTLbQEZbUhHmcFWZa93S7e5G41WZso5uRPT05vJbuXgf8kaGAEO2eByMQj-Z44pydFGZZzLKfv58G7asgzXB3R1RAfMT7NT77Ojykub0So_md7m-hVr6ZoDF00WvDkRZCaZ32nAOUa5-frlP9hPp2x9ZFXwMQbT3_-XgDzM413s8jCPcpnHLHv1MKt70d0Asr9TON8c</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Chen, Kuang-Yui M</creator><creator>Sun, Jiaming</creator><creator>Salvo, Jason S</creator><creator>Baker, David</creator><creator>Barth, Patrick</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140501</creationdate><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><author>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Amino Acid Sequence</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - ultrastructure</topic><topic>Methods</topic><topic>Models, Chemical</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Sequence Data</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Protein folding</topic><topic>Protein-protein interactions</topic><topic>Receptor, Adenosine A2A - chemistry</topic><topic>Receptor, Adenosine A2A - ultrastructure</topic><topic>Receptors, CXCR4 - chemistry</topic><topic>Receptors, CXCR4 - ultrastructure</topic><topic>Sequence Homology, Amino Acid</topic><topic>Synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kuang-Yui M</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Salvo, Jason S</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Barth, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kuang-Yui M</au><au>Sun, Jiaming</au><au>Salvo, Jason S</au><au>Baker, David</au><au>Barth, Patrick</au><au>Schlessinger, Avner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution modeling of transmembrane helical protein structures from distant homologues</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>10</volume><issue>5</issue><spage>e1003636</spage><epage>e1003636</epage><pages>e1003636-e1003636</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24854015</pmid><doi>10.1371/journal.pcbi.1003636</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2014-05, Vol.10 (5), p.e1003636-e1003636 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1536043735 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Accuracy Amino Acid Sequence Biology and Life Sciences Computer Simulation Crystal structure Membrane proteins Membrane Proteins - chemistry Membrane Proteins - ultrastructure Methods Models, Chemical Molecular Docking Simulation - methods Molecular Sequence Data Physiological aspects Protein Conformation Protein folding Protein-protein interactions Receptor, Adenosine A2A - chemistry Receptor, Adenosine A2A - ultrastructure Receptors, CXCR4 - chemistry Receptors, CXCR4 - ultrastructure Sequence Homology, Amino Acid Synthetic biology |
title | High-resolution modeling of transmembrane helical protein structures from distant homologues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20modeling%20of%20transmembrane%20helical%20protein%20structures%20from%20distant%20homologues&rft.jtitle=PLoS%20computational%20biology&rft.au=Chen,%20Kuang-Yui%20M&rft.date=2014-05-01&rft.volume=10&rft.issue=5&rft.spage=e1003636&rft.epage=e1003636&rft.pages=e1003636-e1003636&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003636&rft_dat=%3Cgale_plos_%3EA382950567%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528340340&rft_id=info:pmid/24854015&rft_galeid=A382950567&rft_doaj_id=oai_doaj_org_article_bac6d73fc45e41c390d0a3271b23ea8c&rfr_iscdi=true |