High-resolution modeling of transmembrane helical protein structures from distant homologues

Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-05, Vol.10 (5), p.e1003636-e1003636
Hauptverfasser: Chen, Kuang-Yui M, Sun, Jiaming, Salvo, Jason S, Baker, David, Barth, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003636
container_issue 5
container_start_page e1003636
container_title PLoS computational biology
container_volume 10
creator Chen, Kuang-Yui M
Sun, Jiaming
Salvo, Jason S
Baker, David
Barth, Patrick
description Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.
doi_str_mv 10.1371/journal.pcbi.1003636
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1536043735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382950567</galeid><doaj_id>oai_doaj_org_article_bac6d73fc45e41c390d0a3271b23ea8c</doaj_id><sourcerecordid>A382950567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</originalsourceid><addsrcrecordid>eNqVkk9v1DAQxSMEoqXwDRDkWA5ZxnbsZC9IVQV0pQok_tyQrIntZL1y4sV2EHx7vGxadY_IB1vj33tjP01RvCSwIqwhb3d-DhO61V51dkUAmGDiUXFOOGdVw3j7-MH5rHgW4y4zvF2Lp8UZrVteA-HnxY8bO2yrYKJ3c7J-KkevjbPTUPq-TAGnOJqxy7spt7mu0JX74JOxUxlTmFWas7bsgx9LbWPCKZVbP3rnh9nE58WTHl00L5b9ovj-4f2365vq9vPHzfXVbaUE8FR1HDujgQACougpEZziWrdNpymItQKmKKF0DbruBCBtAVBxg8CNUNhzdlG8PvrunY9yCSZKwpmAmuUAMrE5EtrjTu6DHTH8kR6t_FfwYZAYklXOyA6V0A3rVc1NTRTLbQEZbUhHmcFWZa93S7e5G41WZso5uRPT05vJbuXgf8kaGAEO2eByMQj-Z44pydFGZZzLKfv58G7asgzXB3R1RAfMT7NT77Ojykub0So_md7m-hVr6ZoDF00WvDkRZCaZ32nAOUa5-frlP9hPp2x9ZFXwMQbT3_-XgDzM413s8jCPcpnHLHv1MKt70d0Asr9TON8c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528340340</pqid></control><display><type>article</type><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick</creator><contributor>Schlessinger, Avner</contributor><creatorcontrib>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick ; Schlessinger, Avner</creatorcontrib><description>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003636</identifier><identifier>PMID: 24854015</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Amino Acid Sequence ; Biology and Life Sciences ; Computer Simulation ; Crystal structure ; Membrane proteins ; Membrane Proteins - chemistry ; Membrane Proteins - ultrastructure ; Methods ; Models, Chemical ; Molecular Docking Simulation - methods ; Molecular Sequence Data ; Physiological aspects ; Protein Conformation ; Protein folding ; Protein-protein interactions ; Receptor, Adenosine A2A - chemistry ; Receptor, Adenosine A2A - ultrastructure ; Receptors, CXCR4 - chemistry ; Receptors, CXCR4 - ultrastructure ; Sequence Homology, Amino Acid ; Synthetic biology</subject><ispartof>PLoS computational biology, 2014-05, Vol.10 (5), p.e1003636-e1003636</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Chen et al 2014 Chen et al</rights><rights>2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chen K-YM, Sun J, Salvo JS, Baker D, Barth P (2014) High-Resolution Modeling of Transmembrane Helical Protein Structures from Distant Homologues. PLoS Comput Biol 10(5): e1003636. doi:10.1371/journal.pcbi.1003636</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</citedby><cites>FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031050/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031050/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24854015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schlessinger, Avner</contributor><creatorcontrib>Chen, Kuang-Yui M</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Salvo, Jason S</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Barth, Patrick</creatorcontrib><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</description><subject>Accuracy</subject><subject>Amino Acid Sequence</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - ultrastructure</subject><subject>Methods</subject><subject>Models, Chemical</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Sequence Data</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Protein folding</subject><subject>Protein-protein interactions</subject><subject>Receptor, Adenosine A2A - chemistry</subject><subject>Receptor, Adenosine A2A - ultrastructure</subject><subject>Receptors, CXCR4 - chemistry</subject><subject>Receptors, CXCR4 - ultrastructure</subject><subject>Sequence Homology, Amino Acid</subject><subject>Synthetic biology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk9v1DAQxSMEoqXwDRDkWA5ZxnbsZC9IVQV0pQok_tyQrIntZL1y4sV2EHx7vGxadY_IB1vj33tjP01RvCSwIqwhb3d-DhO61V51dkUAmGDiUXFOOGdVw3j7-MH5rHgW4y4zvF2Lp8UZrVteA-HnxY8bO2yrYKJ3c7J-KkevjbPTUPq-TAGnOJqxy7spt7mu0JX74JOxUxlTmFWas7bsgx9LbWPCKZVbP3rnh9nE58WTHl00L5b9ovj-4f2365vq9vPHzfXVbaUE8FR1HDujgQACougpEZziWrdNpymItQKmKKF0DbruBCBtAVBxg8CNUNhzdlG8PvrunY9yCSZKwpmAmuUAMrE5EtrjTu6DHTH8kR6t_FfwYZAYklXOyA6V0A3rVc1NTRTLbQEZbUhHmcFWZa93S7e5G41WZso5uRPT05vJbuXgf8kaGAEO2eByMQj-Z44pydFGZZzLKfv58G7asgzXB3R1RAfMT7NT77Ojykub0So_md7m-hVr6ZoDF00WvDkRZCaZ32nAOUa5-frlP9hPp2x9ZFXwMQbT3_-XgDzM413s8jCPcpnHLHv1MKt70d0Asr9TON8c</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Chen, Kuang-Yui M</creator><creator>Sun, Jiaming</creator><creator>Salvo, Jason S</creator><creator>Baker, David</creator><creator>Barth, Patrick</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140501</creationdate><title>High-resolution modeling of transmembrane helical protein structures from distant homologues</title><author>Chen, Kuang-Yui M ; Sun, Jiaming ; Salvo, Jason S ; Baker, David ; Barth, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-b5abed010a0aa6f21652a9d87bd2069c03c212290d4b60a2800ac5ea05e6caf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Amino Acid Sequence</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - ultrastructure</topic><topic>Methods</topic><topic>Models, Chemical</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Sequence Data</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Protein folding</topic><topic>Protein-protein interactions</topic><topic>Receptor, Adenosine A2A - chemistry</topic><topic>Receptor, Adenosine A2A - ultrastructure</topic><topic>Receptors, CXCR4 - chemistry</topic><topic>Receptors, CXCR4 - ultrastructure</topic><topic>Sequence Homology, Amino Acid</topic><topic>Synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kuang-Yui M</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Salvo, Jason S</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Barth, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kuang-Yui M</au><au>Sun, Jiaming</au><au>Salvo, Jason S</au><au>Baker, David</au><au>Barth, Patrick</au><au>Schlessinger, Avner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution modeling of transmembrane helical protein structures from distant homologues</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>10</volume><issue>5</issue><spage>e1003636</spage><epage>e1003636</epage><pages>e1003636-e1003636</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24854015</pmid><doi>10.1371/journal.pcbi.1003636</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2014-05, Vol.10 (5), p.e1003636-e1003636
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1536043735
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Accuracy
Amino Acid Sequence
Biology and Life Sciences
Computer Simulation
Crystal structure
Membrane proteins
Membrane Proteins - chemistry
Membrane Proteins - ultrastructure
Methods
Models, Chemical
Molecular Docking Simulation - methods
Molecular Sequence Data
Physiological aspects
Protein Conformation
Protein folding
Protein-protein interactions
Receptor, Adenosine A2A - chemistry
Receptor, Adenosine A2A - ultrastructure
Receptors, CXCR4 - chemistry
Receptors, CXCR4 - ultrastructure
Sequence Homology, Amino Acid
Synthetic biology
title High-resolution modeling of transmembrane helical protein structures from distant homologues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20modeling%20of%20transmembrane%20helical%20protein%20structures%20from%20distant%20homologues&rft.jtitle=PLoS%20computational%20biology&rft.au=Chen,%20Kuang-Yui%20M&rft.date=2014-05-01&rft.volume=10&rft.issue=5&rft.spage=e1003636&rft.epage=e1003636&rft.pages=e1003636-e1003636&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003636&rft_dat=%3Cgale_plos_%3EA382950567%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528340340&rft_id=info:pmid/24854015&rft_galeid=A382950567&rft_doaj_id=oai_doaj_org_article_bac6d73fc45e41c390d0a3271b23ea8c&rfr_iscdi=true