Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold

Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-06, Vol.9 (6), p.e99410-e99410
Hauptverfasser: Ye, Ken, Felimban, Raed, Traianedes, Kathy, Moulton, Simon E, Wallace, Gordon G, Chung, Johnson, Quigley, Anita, Choong, Peter F M, Myers, Damian E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e99410
container_issue 6
container_start_page e99410
container_title PloS one
container_volume 9
creator Ye, Ken
Felimban, Raed
Traianedes, Kathy
Moulton, Simon E
Wallace, Gordon G
Chung, Johnson
Quigley, Anita
Choong, Peter F M
Myers, Damian E
description Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.
doi_str_mv 10.1371/journal.pone.0099410
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1535002990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418635280</galeid><doaj_id>oai_doaj_org_article_2bd7def61ef24639a20c76c7e52f3f2f</doaj_id><sourcerecordid>A418635280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-12c429b8c4ea788406e57b976b1101ea548d1fb6cdefef3bd38c55a9e15c2b2f3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2twIy_g1sLDg121Ik5OZLJ2mJumi_97MTneZyl5IL1rS533f5JyconiO0RLTGr-78mPoVbccfA9LhIRgGD0oTrGgZMEJog-Pvk-KJzFeIVTRhvPHxQlhAjeM0dOiXW19b4LfQA_RxdLb0vU2qEEl6DoVSqtSOShTGgjuGkypjBt8hDIm2JU6MzELSvqhHILrUwb01iUfVV9Graz1nXlaPLKqi_Bsep8VPz59_L76sri4_LxenV8sNBckLTDRjIi20QxU3TQMcajqVtS8xRhhUBVrDLYt1wYsWNoa2uiqUgJwpUlLLD0rXh58h85HOZUnSlzRCiEiBMrE-kAYr65k3vBOhT_SKydvFnzYSBWS0x1I0po6B3EMljBOhSJI11zXUOUke5P2fkob2x0YDX0KqpuZzv_0bis3_lqy3AVGaTZ4MxkE_2uEmOTOxX1BVQ9-POybE1JzntFX_6D3n26iNiofIHfR51y9N5XnDDecVqTZU8t7qPwY2Dmd75J1eX0meDsTZCbB77RRY4xy_e3r_7OXP-fs6yN2C6pL2-i7MTnfxznIDqAOPsYA9q7IGMn9KNxWQ-5HQU6jkGUvjht0J7q9-_QvvIwEXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535002990</pqid></control><display><type>article</type><title>Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ye, Ken ; Felimban, Raed ; Traianedes, Kathy ; Moulton, Simon E ; Wallace, Gordon G ; Chung, Johnson ; Quigley, Anita ; Choong, Peter F M ; Myers, Damian E</creator><creatorcontrib>Ye, Ken ; Felimban, Raed ; Traianedes, Kathy ; Moulton, Simon E ; Wallace, Gordon G ; Chung, Johnson ; Quigley, Anita ; Choong, Peter F M ; Myers, Damian E</creatorcontrib><description>Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0099410</identifier><identifier>PMID: 24918443</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose Tissue - cytology ; Aggrecan ; Analysis ; Arthritis ; Biocompatibility ; Biology and Life Sciences ; Biomedical materials ; Bone marrow ; Bone morphogenetic protein 6 ; Bone morphogenetic proteins ; Cartilage ; Casing (process) ; Chitosan ; Chondrogenesis ; Collagen ; Collagen (type I) ; Collagen (type II) ; Defects ; Engineering and Technology ; Ethics ; Extracellular matrix ; Gene expression ; Growth factors ; Humans ; Immunohistochemistry ; Joint surgery ; Knee ; Medicine and Health Sciences ; Neurosciences ; Patella - cytology ; Physical Sciences ; Polymers ; Proteoglycans ; Real-Time Polymerase Chain Reaction ; Scaffolds ; Sox9 protein ; Stem cells ; Stem Cells - cytology ; Surgery ; Three dimensional printing ; Tissue engineering ; Tissue Scaffolds ; Toluidine ; Toluidine blue ; Transforming growth factors ; Transplants &amp; implants</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e99410-e99410</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Ye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ye et al 2014 Ye et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-12c429b8c4ea788406e57b976b1101ea548d1fb6cdefef3bd38c55a9e15c2b2f3</citedby><cites>FETCH-LOGICAL-c692t-12c429b8c4ea788406e57b976b1101ea548d1fb6cdefef3bd38c55a9e15c2b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053433/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053433/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24918443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Ken</creatorcontrib><creatorcontrib>Felimban, Raed</creatorcontrib><creatorcontrib>Traianedes, Kathy</creatorcontrib><creatorcontrib>Moulton, Simon E</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Chung, Johnson</creatorcontrib><creatorcontrib>Quigley, Anita</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Myers, Damian E</creatorcontrib><title>Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.</description><subject>Adipose Tissue - cytology</subject><subject>Aggrecan</subject><subject>Analysis</subject><subject>Arthritis</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Bone morphogenetic protein 6</subject><subject>Bone morphogenetic proteins</subject><subject>Cartilage</subject><subject>Casing (process)</subject><subject>Chitosan</subject><subject>Chondrogenesis</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type II)</subject><subject>Defects</subject><subject>Engineering and Technology</subject><subject>Ethics</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Joint surgery</subject><subject>Knee</subject><subject>Medicine and Health Sciences</subject><subject>Neurosciences</subject><subject>Patella - cytology</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Proteoglycans</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Scaffolds</subject><subject>Sox9 protein</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Surgery</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Toluidine</subject><subject>Toluidine blue</subject><subject>Transforming growth factors</subject><subject>Transplants &amp; implants</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2twIy_g1sLDg121Ik5OZLJ2mJumi_97MTneZyl5IL1rS533f5JyconiO0RLTGr-78mPoVbccfA9LhIRgGD0oTrGgZMEJog-Pvk-KJzFeIVTRhvPHxQlhAjeM0dOiXW19b4LfQA_RxdLb0vU2qEEl6DoVSqtSOShTGgjuGkypjBt8hDIm2JU6MzELSvqhHILrUwb01iUfVV9Graz1nXlaPLKqi_Bsep8VPz59_L76sri4_LxenV8sNBckLTDRjIi20QxU3TQMcajqVtS8xRhhUBVrDLYt1wYsWNoa2uiqUgJwpUlLLD0rXh58h85HOZUnSlzRCiEiBMrE-kAYr65k3vBOhT_SKydvFnzYSBWS0x1I0po6B3EMljBOhSJI11zXUOUke5P2fkob2x0YDX0KqpuZzv_0bis3_lqy3AVGaTZ4MxkE_2uEmOTOxX1BVQ9-POybE1JzntFX_6D3n26iNiofIHfR51y9N5XnDDecVqTZU8t7qPwY2Dmd75J1eX0meDsTZCbB77RRY4xy_e3r_7OXP-fs6yN2C6pL2-i7MTnfxznIDqAOPsYA9q7IGMn9KNxWQ-5HQU6jkGUvjht0J7q9-_QvvIwEXg</recordid><startdate>20140611</startdate><enddate>20140611</enddate><creator>Ye, Ken</creator><creator>Felimban, Raed</creator><creator>Traianedes, Kathy</creator><creator>Moulton, Simon E</creator><creator>Wallace, Gordon G</creator><creator>Chung, Johnson</creator><creator>Quigley, Anita</creator><creator>Choong, Peter F M</creator><creator>Myers, Damian E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140611</creationdate><title>Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold</title><author>Ye, Ken ; Felimban, Raed ; Traianedes, Kathy ; Moulton, Simon E ; Wallace, Gordon G ; Chung, Johnson ; Quigley, Anita ; Choong, Peter F M ; Myers, Damian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-12c429b8c4ea788406e57b976b1101ea548d1fb6cdefef3bd38c55a9e15c2b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipose Tissue - cytology</topic><topic>Aggrecan</topic><topic>Analysis</topic><topic>Arthritis</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Bone morphogenetic protein 6</topic><topic>Bone morphogenetic proteins</topic><topic>Cartilage</topic><topic>Casing (process)</topic><topic>Chitosan</topic><topic>Chondrogenesis</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type II)</topic><topic>Defects</topic><topic>Engineering and Technology</topic><topic>Ethics</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Joint surgery</topic><topic>Knee</topic><topic>Medicine and Health Sciences</topic><topic>Neurosciences</topic><topic>Patella - cytology</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Proteoglycans</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Scaffolds</topic><topic>Sox9 protein</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Surgery</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Toluidine</topic><topic>Toluidine blue</topic><topic>Transforming growth factors</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ken</creatorcontrib><creatorcontrib>Felimban, Raed</creatorcontrib><creatorcontrib>Traianedes, Kathy</creatorcontrib><creatorcontrib>Moulton, Simon E</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Chung, Johnson</creatorcontrib><creatorcontrib>Quigley, Anita</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Myers, Damian E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ken</au><au>Felimban, Raed</au><au>Traianedes, Kathy</au><au>Moulton, Simon E</au><au>Wallace, Gordon G</au><au>Chung, Johnson</au><au>Quigley, Anita</au><au>Choong, Peter F M</au><au>Myers, Damian E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-11</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e99410</spage><epage>e99410</epage><pages>e99410-e99410</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24918443</pmid><doi>10.1371/journal.pone.0099410</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e99410-e99410
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1535002990
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adipose Tissue - cytology
Aggrecan
Analysis
Arthritis
Biocompatibility
Biology and Life Sciences
Biomedical materials
Bone marrow
Bone morphogenetic protein 6
Bone morphogenetic proteins
Cartilage
Casing (process)
Chitosan
Chondrogenesis
Collagen
Collagen (type I)
Collagen (type II)
Defects
Engineering and Technology
Ethics
Extracellular matrix
Gene expression
Growth factors
Humans
Immunohistochemistry
Joint surgery
Knee
Medicine and Health Sciences
Neurosciences
Patella - cytology
Physical Sciences
Polymers
Proteoglycans
Real-Time Polymerase Chain Reaction
Scaffolds
Sox9 protein
Stem cells
Stem Cells - cytology
Surgery
Three dimensional printing
Tissue engineering
Tissue Scaffolds
Toluidine
Toluidine blue
Transforming growth factors
Transplants & implants
title Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrogenesis%20of%20infrapatellar%20fat%20pad%20derived%20adipose%20stem%20cells%20in%203D%20printed%20chitosan%20scaffold&rft.jtitle=PloS%20one&rft.au=Ye,%20Ken&rft.date=2014-06-11&rft.volume=9&rft.issue=6&rft.spage=e99410&rft.epage=e99410&rft.pages=e99410-e99410&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0099410&rft_dat=%3Cgale_plos_%3EA418635280%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535002990&rft_id=info:pmid/24918443&rft_galeid=A418635280&rft_doaj_id=oai_doaj_org_article_2bd7def61ef24639a20c76c7e52f3f2f&rfr_iscdi=true