Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes
Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron redu...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-06, Vol.9 (6), p.e98551 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e98551 |
container_title | PloS one |
container_volume | 9 |
creator | Ryan, Ali Kaplan, Elise Nebel, Jean-Christophe Polycarpou, Elena Crescente, Vincenzo Lowe, Edward Preston, Gail M Sim, Edith |
description | Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions. |
doi_str_mv | 10.1371/journal.pone.0098551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1534520722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4fe91296a2624e2a938d3b26eeda4145</doaj_id><sourcerecordid>3330552711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqXwBggssYHFDP5P0gVSVSgdqZQuYG3d2DdTj5J4aicV0yfkscgwaWmRECtbvvd899g-WfaS0TkTOXu_CkPsoJmvQ4dzSstCKfYo22el4DPNqXh8b7-XPUtpRakShdZPsz0uS6ZYUexnPxcOu97X3kLvQ0dCTc6PPr69eHdKrgbfjWwSfngXIrrB9pCQgO39te83xHcEbv4UEqljaMnFnADGYTlqExz-1QGd-w8-kQqb0C1JH0h_iSRBi-Tky_nM4Rq7rVeShjXGGlrfbLZ2sbvZtJieZ09qaBK-mNaD7PvJp2_Hp7Ozr58Xx0dnM6u47mdCViBV7myZWyclA8VlTpWsawcItXay1BWrCl4zcKW0hbJ5XjAtytKNjyzFQfZ6x103IZnpE5JhSkjFac752LHYdbgAK7OOvoW4MQG8-X0Q4tJA7L1t0MgaS8ZLDVxziRxKUThRcY3oQDKpRtaHadpQtejseP8IzQPow0rnL80yXBtJFdOUjYA3EyCGqwFT_w_LctdlY0gpYn03gVGzTdutymzTZqa0jbJX993diW7jJX4BI7TXeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534520722</pqid></control><display><type>article</type><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith</creator><contributor>Netto, Luis ESoares</contributor><creatorcontrib>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith ; Netto, Luis ESoares</creatorcontrib><description>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098551</identifier><identifier>PMID: 24915188</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibacterial materials ; Arabidopsis thaliana ; Archaeoglobus fulgidus ; Azoreductase ; Bacteria ; Biology and Life Sciences ; Cell survival ; Computational Biology ; Cytotoxicity ; Detoxification ; Divergence ; E coli ; Engineering ; Enzyme Activation ; Enzymes ; Escherichia coli ; Flavin Mononucleotide - metabolism ; Fungi ; Hydroquinone ; Infections ; Invertebrates ; Kinases ; Mammals ; Medicine and Health Sciences ; Models, Molecular ; Molecular Conformation ; Multigene Family ; NAD ; NADH, NADPH Oxidoreductases - chemistry ; NADH, NADPH Oxidoreductases - genetics ; NADH, NADPH Oxidoreductases - metabolism ; Nitroreductases ; Oxidation-Reduction ; Oxidoreductase ; Pathogens ; Pharmacology ; Phylogeny ; Plant species ; Protein Binding ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - classification ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; Quinone oxidoreductase ; Quinones ; Quinones - chemistry ; Quinones - metabolism ; Reaction mechanisms ; Rhodobacter sphaeroides ; Science ; Structure-Activity Relationship ; Substrate Specificity ; Substrates</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e98551</ispartof><rights>2014 Ryan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ryan et al 2014 Ryan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</citedby><cites>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051601/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051601/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24915188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Netto, Luis ESoares</contributor><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Kaplan, Elise</creatorcontrib><creatorcontrib>Nebel, Jean-Christophe</creatorcontrib><creatorcontrib>Polycarpou, Elena</creatorcontrib><creatorcontrib>Crescente, Vincenzo</creatorcontrib><creatorcontrib>Lowe, Edward</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</description><subject>Antibacterial materials</subject><subject>Arabidopsis thaliana</subject><subject>Archaeoglobus fulgidus</subject><subject>Azoreductase</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Cell survival</subject><subject>Computational Biology</subject><subject>Cytotoxicity</subject><subject>Detoxification</subject><subject>Divergence</subject><subject>E coli</subject><subject>Engineering</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Fungi</subject><subject>Hydroquinone</subject><subject>Infections</subject><subject>Invertebrates</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Multigene Family</subject><subject>NAD</subject><subject>NADH, NADPH Oxidoreductases - chemistry</subject><subject>NADH, NADPH Oxidoreductases - genetics</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nitroreductases</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductase</subject><subject>Pathogens</subject><subject>Pharmacology</subject><subject>Phylogeny</subject><subject>Plant species</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - classification</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Quinone oxidoreductase</subject><subject>Quinones</subject><subject>Quinones - chemistry</subject><subject>Quinones - metabolism</subject><subject>Reaction mechanisms</subject><subject>Rhodobacter sphaeroides</subject><subject>Science</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1u1DAUhSMEoqXwBggssYHFDP5P0gVSVSgdqZQuYG3d2DdTj5J4aicV0yfkscgwaWmRECtbvvd899g-WfaS0TkTOXu_CkPsoJmvQ4dzSstCKfYo22el4DPNqXh8b7-XPUtpRakShdZPsz0uS6ZYUexnPxcOu97X3kLvQ0dCTc6PPr69eHdKrgbfjWwSfngXIrrB9pCQgO39te83xHcEbv4UEqljaMnFnADGYTlqExz-1QGd-w8-kQqb0C1JH0h_iSRBi-Tky_nM4Rq7rVeShjXGGlrfbLZ2sbvZtJieZ09qaBK-mNaD7PvJp2_Hp7Ozr58Xx0dnM6u47mdCViBV7myZWyclA8VlTpWsawcItXay1BWrCl4zcKW0hbJ5XjAtytKNjyzFQfZ6x103IZnpE5JhSkjFac752LHYdbgAK7OOvoW4MQG8-X0Q4tJA7L1t0MgaS8ZLDVxziRxKUThRcY3oQDKpRtaHadpQtejseP8IzQPow0rnL80yXBtJFdOUjYA3EyCGqwFT_w_LctdlY0gpYn03gVGzTdutymzTZqa0jbJX993diW7jJX4BI7TXeA</recordid><startdate>20140610</startdate><enddate>20140610</enddate><creator>Ryan, Ali</creator><creator>Kaplan, Elise</creator><creator>Nebel, Jean-Christophe</creator><creator>Polycarpou, Elena</creator><creator>Crescente, Vincenzo</creator><creator>Lowe, Edward</creator><creator>Preston, Gail M</creator><creator>Sim, Edith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140610</creationdate><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><author>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibacterial materials</topic><topic>Arabidopsis thaliana</topic><topic>Archaeoglobus fulgidus</topic><topic>Azoreductase</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Cell survival</topic><topic>Computational Biology</topic><topic>Cytotoxicity</topic><topic>Detoxification</topic><topic>Divergence</topic><topic>E coli</topic><topic>Engineering</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Fungi</topic><topic>Hydroquinone</topic><topic>Infections</topic><topic>Invertebrates</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Multigene Family</topic><topic>NAD</topic><topic>NADH, NADPH Oxidoreductases - chemistry</topic><topic>NADH, NADPH Oxidoreductases - genetics</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nitroreductases</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductase</topic><topic>Pathogens</topic><topic>Pharmacology</topic><topic>Phylogeny</topic><topic>Plant species</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - classification</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Quinone oxidoreductase</topic><topic>Quinones</topic><topic>Quinones - chemistry</topic><topic>Quinones - metabolism</topic><topic>Reaction mechanisms</topic><topic>Rhodobacter sphaeroides</topic><topic>Science</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Kaplan, Elise</creatorcontrib><creatorcontrib>Nebel, Jean-Christophe</creatorcontrib><creatorcontrib>Polycarpou, Elena</creatorcontrib><creatorcontrib>Crescente, Vincenzo</creatorcontrib><creatorcontrib>Lowe, Edward</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Ali</au><au>Kaplan, Elise</au><au>Nebel, Jean-Christophe</au><au>Polycarpou, Elena</au><au>Crescente, Vincenzo</au><au>Lowe, Edward</au><au>Preston, Gail M</au><au>Sim, Edith</au><au>Netto, Luis ESoares</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-10</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e98551</spage><pages>e98551-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24915188</pmid><doi>10.1371/journal.pone.0098551</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-06, Vol.9 (6), p.e98551 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1534520722 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Antibacterial materials Arabidopsis thaliana Archaeoglobus fulgidus Azoreductase Bacteria Biology and Life Sciences Cell survival Computational Biology Cytotoxicity Detoxification Divergence E coli Engineering Enzyme Activation Enzymes Escherichia coli Flavin Mononucleotide - metabolism Fungi Hydroquinone Infections Invertebrates Kinases Mammals Medicine and Health Sciences Models, Molecular Molecular Conformation Multigene Family NAD NADH, NADPH Oxidoreductases - chemistry NADH, NADPH Oxidoreductases - genetics NADH, NADPH Oxidoreductases - metabolism Nitroreductases Oxidation-Reduction Oxidoreductase Pathogens Pharmacology Phylogeny Plant species Protein Binding Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - classification Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Quinone oxidoreductase Quinones Quinones - chemistry Quinones - metabolism Reaction mechanisms Rhodobacter sphaeroides Science Structure-Activity Relationship Substrate Specificity Substrates |
title | Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20NAD(P)H%20quinone%20oxidoreductase%20activity%20in%20azoreductases%20from%20P.%20aeruginosa:%20azoreductases%20and%20NAD(P)H%20quinone%20oxidoreductases%20belong%20to%20the%20same%20FMN-dependent%20superfamily%20of%20enzymes&rft.jtitle=PloS%20one&rft.au=Ryan,%20Ali&rft.date=2014-06-10&rft.volume=9&rft.issue=6&rft.spage=e98551&rft.pages=e98551-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098551&rft_dat=%3Cproquest_plos_%3E3330552711%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534520722&rft_id=info:pmid/24915188&rft_doaj_id=oai_doaj_org_article_4fe91296a2624e2a938d3b26eeda4145&rfr_iscdi=true |