Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes

Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-06, Vol.9 (6), p.e98551
Hauptverfasser: Ryan, Ali, Kaplan, Elise, Nebel, Jean-Christophe, Polycarpou, Elena, Crescente, Vincenzo, Lowe, Edward, Preston, Gail M, Sim, Edith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e98551
container_title PloS one
container_volume 9
creator Ryan, Ali
Kaplan, Elise
Nebel, Jean-Christophe
Polycarpou, Elena
Crescente, Vincenzo
Lowe, Edward
Preston, Gail M
Sim, Edith
description Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.
doi_str_mv 10.1371/journal.pone.0098551
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1534520722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4fe91296a2624e2a938d3b26eeda4145</doaj_id><sourcerecordid>3330552711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqXwBggssYHFDP5P0gVSVSgdqZQuYG3d2DdTj5J4aicV0yfkscgwaWmRECtbvvd899g-WfaS0TkTOXu_CkPsoJmvQ4dzSstCKfYo22el4DPNqXh8b7-XPUtpRakShdZPsz0uS6ZYUexnPxcOu97X3kLvQ0dCTc6PPr69eHdKrgbfjWwSfngXIrrB9pCQgO39te83xHcEbv4UEqljaMnFnADGYTlqExz-1QGd-w8-kQqb0C1JH0h_iSRBi-Tky_nM4Rq7rVeShjXGGlrfbLZ2sbvZtJieZ09qaBK-mNaD7PvJp2_Hp7Ozr58Xx0dnM6u47mdCViBV7myZWyclA8VlTpWsawcItXay1BWrCl4zcKW0hbJ5XjAtytKNjyzFQfZ6x103IZnpE5JhSkjFac752LHYdbgAK7OOvoW4MQG8-X0Q4tJA7L1t0MgaS8ZLDVxziRxKUThRcY3oQDKpRtaHadpQtejseP8IzQPow0rnL80yXBtJFdOUjYA3EyCGqwFT_w_LctdlY0gpYn03gVGzTdutymzTZqa0jbJX993diW7jJX4BI7TXeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534520722</pqid></control><display><type>article</type><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith</creator><contributor>Netto, Luis ESoares</contributor><creatorcontrib>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith ; Netto, Luis ESoares</creatorcontrib><description>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098551</identifier><identifier>PMID: 24915188</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibacterial materials ; Arabidopsis thaliana ; Archaeoglobus fulgidus ; Azoreductase ; Bacteria ; Biology and Life Sciences ; Cell survival ; Computational Biology ; Cytotoxicity ; Detoxification ; Divergence ; E coli ; Engineering ; Enzyme Activation ; Enzymes ; Escherichia coli ; Flavin Mononucleotide - metabolism ; Fungi ; Hydroquinone ; Infections ; Invertebrates ; Kinases ; Mammals ; Medicine and Health Sciences ; Models, Molecular ; Molecular Conformation ; Multigene Family ; NAD ; NADH, NADPH Oxidoreductases - chemistry ; NADH, NADPH Oxidoreductases - genetics ; NADH, NADPH Oxidoreductases - metabolism ; Nitroreductases ; Oxidation-Reduction ; Oxidoreductase ; Pathogens ; Pharmacology ; Phylogeny ; Plant species ; Protein Binding ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - classification ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; Quinone oxidoreductase ; Quinones ; Quinones - chemistry ; Quinones - metabolism ; Reaction mechanisms ; Rhodobacter sphaeroides ; Science ; Structure-Activity Relationship ; Substrate Specificity ; Substrates</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e98551</ispartof><rights>2014 Ryan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ryan et al 2014 Ryan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</citedby><cites>FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051601/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051601/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24915188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Netto, Luis ESoares</contributor><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Kaplan, Elise</creatorcontrib><creatorcontrib>Nebel, Jean-Christophe</creatorcontrib><creatorcontrib>Polycarpou, Elena</creatorcontrib><creatorcontrib>Crescente, Vincenzo</creatorcontrib><creatorcontrib>Lowe, Edward</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</description><subject>Antibacterial materials</subject><subject>Arabidopsis thaliana</subject><subject>Archaeoglobus fulgidus</subject><subject>Azoreductase</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Cell survival</subject><subject>Computational Biology</subject><subject>Cytotoxicity</subject><subject>Detoxification</subject><subject>Divergence</subject><subject>E coli</subject><subject>Engineering</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Fungi</subject><subject>Hydroquinone</subject><subject>Infections</subject><subject>Invertebrates</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Multigene Family</subject><subject>NAD</subject><subject>NADH, NADPH Oxidoreductases - chemistry</subject><subject>NADH, NADPH Oxidoreductases - genetics</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nitroreductases</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductase</subject><subject>Pathogens</subject><subject>Pharmacology</subject><subject>Phylogeny</subject><subject>Plant species</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - classification</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Quinone oxidoreductase</subject><subject>Quinones</subject><subject>Quinones - chemistry</subject><subject>Quinones - metabolism</subject><subject>Reaction mechanisms</subject><subject>Rhodobacter sphaeroides</subject><subject>Science</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1u1DAUhSMEoqXwBggssYHFDP5P0gVSVSgdqZQuYG3d2DdTj5J4aicV0yfkscgwaWmRECtbvvd899g-WfaS0TkTOXu_CkPsoJmvQ4dzSstCKfYo22el4DPNqXh8b7-XPUtpRakShdZPsz0uS6ZYUexnPxcOu97X3kLvQ0dCTc6PPr69eHdKrgbfjWwSfngXIrrB9pCQgO39te83xHcEbv4UEqljaMnFnADGYTlqExz-1QGd-w8-kQqb0C1JH0h_iSRBi-Tky_nM4Rq7rVeShjXGGlrfbLZ2sbvZtJieZ09qaBK-mNaD7PvJp2_Hp7Ozr58Xx0dnM6u47mdCViBV7myZWyclA8VlTpWsawcItXay1BWrCl4zcKW0hbJ5XjAtytKNjyzFQfZ6x103IZnpE5JhSkjFac752LHYdbgAK7OOvoW4MQG8-X0Q4tJA7L1t0MgaS8ZLDVxziRxKUThRcY3oQDKpRtaHadpQtejseP8IzQPow0rnL80yXBtJFdOUjYA3EyCGqwFT_w_LctdlY0gpYn03gVGzTdutymzTZqa0jbJX993diW7jJX4BI7TXeA</recordid><startdate>20140610</startdate><enddate>20140610</enddate><creator>Ryan, Ali</creator><creator>Kaplan, Elise</creator><creator>Nebel, Jean-Christophe</creator><creator>Polycarpou, Elena</creator><creator>Crescente, Vincenzo</creator><creator>Lowe, Edward</creator><creator>Preston, Gail M</creator><creator>Sim, Edith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140610</creationdate><title>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</title><author>Ryan, Ali ; Kaplan, Elise ; Nebel, Jean-Christophe ; Polycarpou, Elena ; Crescente, Vincenzo ; Lowe, Edward ; Preston, Gail M ; Sim, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-34ba457dc97cd441a5247054ffdaeaf6d496b1b82f1ad94c85c77816399d00943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibacterial materials</topic><topic>Arabidopsis thaliana</topic><topic>Archaeoglobus fulgidus</topic><topic>Azoreductase</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Cell survival</topic><topic>Computational Biology</topic><topic>Cytotoxicity</topic><topic>Detoxification</topic><topic>Divergence</topic><topic>E coli</topic><topic>Engineering</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Fungi</topic><topic>Hydroquinone</topic><topic>Infections</topic><topic>Invertebrates</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Multigene Family</topic><topic>NAD</topic><topic>NADH, NADPH Oxidoreductases - chemistry</topic><topic>NADH, NADPH Oxidoreductases - genetics</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nitroreductases</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductase</topic><topic>Pathogens</topic><topic>Pharmacology</topic><topic>Phylogeny</topic><topic>Plant species</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - classification</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Quinone oxidoreductase</topic><topic>Quinones</topic><topic>Quinones - chemistry</topic><topic>Quinones - metabolism</topic><topic>Reaction mechanisms</topic><topic>Rhodobacter sphaeroides</topic><topic>Science</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Kaplan, Elise</creatorcontrib><creatorcontrib>Nebel, Jean-Christophe</creatorcontrib><creatorcontrib>Polycarpou, Elena</creatorcontrib><creatorcontrib>Crescente, Vincenzo</creatorcontrib><creatorcontrib>Lowe, Edward</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Ali</au><au>Kaplan, Elise</au><au>Nebel, Jean-Christophe</au><au>Polycarpou, Elena</au><au>Crescente, Vincenzo</au><au>Lowe, Edward</au><au>Preston, Gail M</au><au>Sim, Edith</au><au>Netto, Luis ESoares</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-10</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e98551</spage><pages>e98551-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24915188</pmid><doi>10.1371/journal.pone.0098551</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e98551
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1534520722
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antibacterial materials
Arabidopsis thaliana
Archaeoglobus fulgidus
Azoreductase
Bacteria
Biology and Life Sciences
Cell survival
Computational Biology
Cytotoxicity
Detoxification
Divergence
E coli
Engineering
Enzyme Activation
Enzymes
Escherichia coli
Flavin Mononucleotide - metabolism
Fungi
Hydroquinone
Infections
Invertebrates
Kinases
Mammals
Medicine and Health Sciences
Models, Molecular
Molecular Conformation
Multigene Family
NAD
NADH, NADPH Oxidoreductases - chemistry
NADH, NADPH Oxidoreductases - genetics
NADH, NADPH Oxidoreductases - metabolism
Nitroreductases
Oxidation-Reduction
Oxidoreductase
Pathogens
Pharmacology
Phylogeny
Plant species
Protein Binding
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - classification
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
Quinone oxidoreductase
Quinones
Quinones - chemistry
Quinones - metabolism
Reaction mechanisms
Rhodobacter sphaeroides
Science
Structure-Activity Relationship
Substrate Specificity
Substrates
title Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20NAD(P)H%20quinone%20oxidoreductase%20activity%20in%20azoreductases%20from%20P.%20aeruginosa:%20azoreductases%20and%20NAD(P)H%20quinone%20oxidoreductases%20belong%20to%20the%20same%20FMN-dependent%20superfamily%20of%20enzymes&rft.jtitle=PloS%20one&rft.au=Ryan,%20Ali&rft.date=2014-06-10&rft.volume=9&rft.issue=6&rft.spage=e98551&rft.pages=e98551-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098551&rft_dat=%3Cproquest_plos_%3E3330552711%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534520722&rft_id=info:pmid/24915188&rft_doaj_id=oai_doaj_org_article_4fe91296a2624e2a938d3b26eeda4145&rfr_iscdi=true