A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans

Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and organs interrelate. This inherent interdependency between diverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-06, Vol.9 (6), p.e99275-e99275
Hauptverfasser: Shestopaloff, Yuri K, Sbalzarini, Ivo F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e99275
container_issue 6
container_start_page e99275
container_title PloS one
container_volume 9
creator Shestopaloff, Yuri K
Sbalzarini, Ivo F
description Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and organs interrelate. This inherent interdependency between diverse biological mechanisms, both on the same and on different scales, provides the functioning of an organism capable of maintaining homeostasis and physiological stability through numerous feedback loops. Thus, developing models of organisms and their constituents should be done within the overall systemic context of the studied phenomena. We introduce such a method for modeling growth and regeneration of livers at the organ scale, considering it a part of the overall multi-scale biochemical and biophysical processes of an organism. Our method is based on the earlier discovered general growth law, postulating that any biological growth process comprises a uniquely defined distribution of nutritional resources between maintenance needs and biomass production. Based on this law, we introduce a liver growth model that allows to accurately predicting the growth of liver transplants in dogs and liver grafts in humans. Using this model, we find quantitative growth characteristics, such as the time point when the transition period after surgery is over and the liver resumes normal growth, rates at which hepatocytes are involved in proliferation, etc. We then use the model to determine and quantify otherwise unobservable metabolic properties of livers.
doi_str_mv 10.1371/journal.pone.0099275
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1534316391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418634205</galeid><doaj_id>oai_doaj_org_article_a49fb5c0809c46d39c830b94969676b0</doaj_id><sourcerecordid>A418634205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-399e97459e4aca54b68dd916bfe5976e7a07dfe6a9cbfad66000d7572c71ebc3</originalsourceid><addsrcrecordid>eNqNk1-L1DAUxYso7jr6DUQDgujDjEmTphMfhGXxz8DCgi6-hjS5bTOkzWzS7uqzX9zMTmeZkX2QPDSkv3OSnNybZS8JXhBakg9rP4ZeucXG97DAWIi8LB5lp0TQfM5zTB8fzE-yZzGuMS7okvOn2UnOBCE0Z6fZnzPUwdB6g2ofUOcNONs3qAn-dmiRr5EPjeojUr1BQ0izjVP9EFGlIhjkezS0gBroISi3Vzl1-xGpzcZZrQa7Zfwd5uwNBGR7ZHyzc2zHLlk-z57UykV4MX1n2dWXz1fn3-YXl19X52cXc81FPsypECBKVghgSquCVXxpjCC8qqEQJYdS4dLUwJXQVa0M5xhjUxZlrksClaaz7PXOduN8lFN8UZKCMko4FSQRqx1hvFrLTbCdCr-lV1beLaQopAqD1Q6kYqKuCo2XWGjGDRV6SXElmOCCl7zCyevTtNtYdWA09Ck-d2R6_Ke3rWz8jWQ4mfA8GbybDIK_HiEOsrNRg0v5gx935y4FLtgyoW_-QR--3UQ1Kl3A9rVP--qtqTxjZMkpy1OBzLLFA1QaBjqrU63VNq0fCd4fCRIzwK-hUWOMcvXj-_-zlz-P2bcHbAvKDW30btxWVDwG2Q7UwccYoL4PmWC5bZV9GnLbKnJqlSR7dfhA96J9b9C_8r8POQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534316391</pqid></control><display><type>article</type><title>A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shestopaloff, Yuri K ; Sbalzarini, Ivo F</creator><contributor>Vinciguerra, Manlio</contributor><creatorcontrib>Shestopaloff, Yuri K ; Sbalzarini, Ivo F ; Vinciguerra, Manlio</creatorcontrib><description>Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and organs interrelate. This inherent interdependency between diverse biological mechanisms, both on the same and on different scales, provides the functioning of an organism capable of maintaining homeostasis and physiological stability through numerous feedback loops. Thus, developing models of organisms and their constituents should be done within the overall systemic context of the studied phenomena. We introduce such a method for modeling growth and regeneration of livers at the organ scale, considering it a part of the overall multi-scale biochemical and biophysical processes of an organism. Our method is based on the earlier discovered general growth law, postulating that any biological growth process comprises a uniquely defined distribution of nutritional resources between maintenance needs and biomass production. Based on this law, we introduce a liver growth model that allows to accurately predicting the growth of liver transplants in dogs and liver grafts in humans. Using this model, we find quantitative growth characteristics, such as the time point when the transition period after surgery is over and the liver resumes normal growth, rates at which hepatocytes are involved in proliferation, etc. We then use the model to determine and quantify otherwise unobservable metabolic properties of livers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0099275</identifier><identifier>PMID: 24911324</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Biological activity ; Biology ; Biology and Life Sciences ; Dogs ; Feedback ; Feedback loops ; Female ; Grafts ; Hepatocytes ; Homeostasis ; Humans ; Liver ; Liver - growth &amp; development ; Liver Transplantation ; Liver transplants ; Male ; Metabolism ; Modelling ; Models, Animal ; Models, Biological ; Multiscale analysis ; Organ Size ; Organelles ; Organisms ; Organs ; Physiological aspects ; Regeneration ; Spatial distribution ; Studies ; Surgery ; Time Factors ; Transplants ; Transplants &amp; implants</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e99275-e99275</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Shestopaloff, Sbalzarini. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Shestopaloff, Sbalzarini 2014 Shestopaloff, Sbalzarini</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-399e97459e4aca54b68dd916bfe5976e7a07dfe6a9cbfad66000d7572c71ebc3</citedby><cites>FETCH-LOGICAL-c692t-399e97459e4aca54b68dd916bfe5976e7a07dfe6a9cbfad66000d7572c71ebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24911324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vinciguerra, Manlio</contributor><creatorcontrib>Shestopaloff, Yuri K</creatorcontrib><creatorcontrib>Sbalzarini, Ivo F</creatorcontrib><title>A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and organs interrelate. This inherent interdependency between diverse biological mechanisms, both on the same and on different scales, provides the functioning of an organism capable of maintaining homeostasis and physiological stability through numerous feedback loops. Thus, developing models of organisms and their constituents should be done within the overall systemic context of the studied phenomena. We introduce such a method for modeling growth and regeneration of livers at the organ scale, considering it a part of the overall multi-scale biochemical and biophysical processes of an organism. Our method is based on the earlier discovered general growth law, postulating that any biological growth process comprises a uniquely defined distribution of nutritional resources between maintenance needs and biomass production. Based on this law, we introduce a liver growth model that allows to accurately predicting the growth of liver transplants in dogs and liver grafts in humans. Using this model, we find quantitative growth characteristics, such as the time point when the transition period after surgery is over and the liver resumes normal growth, rates at which hepatocytes are involved in proliferation, etc. We then use the model to determine and quantify otherwise unobservable metabolic properties of livers.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Dogs</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Female</subject><subject>Grafts</subject><subject>Hepatocytes</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver - growth &amp; development</subject><subject>Liver Transplantation</subject><subject>Liver transplants</subject><subject>Male</subject><subject>Metabolism</subject><subject>Modelling</subject><subject>Models, Animal</subject><subject>Models, Biological</subject><subject>Multiscale analysis</subject><subject>Organ Size</subject><subject>Organelles</subject><subject>Organisms</subject><subject>Organs</subject><subject>Physiological aspects</subject><subject>Regeneration</subject><subject>Spatial distribution</subject><subject>Studies</subject><subject>Surgery</subject><subject>Time Factors</subject><subject>Transplants</subject><subject>Transplants &amp; implants</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1-L1DAUxYso7jr6DUQDgujDjEmTphMfhGXxz8DCgi6-hjS5bTOkzWzS7uqzX9zMTmeZkX2QPDSkv3OSnNybZS8JXhBakg9rP4ZeucXG97DAWIi8LB5lp0TQfM5zTB8fzE-yZzGuMS7okvOn2UnOBCE0Z6fZnzPUwdB6g2ofUOcNONs3qAn-dmiRr5EPjeojUr1BQ0izjVP9EFGlIhjkezS0gBroISi3Vzl1-xGpzcZZrQa7Zfwd5uwNBGR7ZHyzc2zHLlk-z57UykV4MX1n2dWXz1fn3-YXl19X52cXc81FPsypECBKVghgSquCVXxpjCC8qqEQJYdS4dLUwJXQVa0M5xhjUxZlrksClaaz7PXOduN8lFN8UZKCMko4FSQRqx1hvFrLTbCdCr-lV1beLaQopAqD1Q6kYqKuCo2XWGjGDRV6SXElmOCCl7zCyevTtNtYdWA09Ck-d2R6_Ke3rWz8jWQ4mfA8GbybDIK_HiEOsrNRg0v5gx935y4FLtgyoW_-QR--3UQ1Kl3A9rVP--qtqTxjZMkpy1OBzLLFA1QaBjqrU63VNq0fCd4fCRIzwK-hUWOMcvXj-_-zlz-P2bcHbAvKDW30btxWVDwG2Q7UwccYoL4PmWC5bZV9GnLbKnJqlSR7dfhA96J9b9C_8r8POQ</recordid><startdate>20140609</startdate><enddate>20140609</enddate><creator>Shestopaloff, Yuri K</creator><creator>Sbalzarini, Ivo F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140609</creationdate><title>A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans</title><author>Shestopaloff, Yuri K ; Sbalzarini, Ivo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-399e97459e4aca54b68dd916bfe5976e7a07dfe6a9cbfad66000d7572c71ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Dogs</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Female</topic><topic>Grafts</topic><topic>Hepatocytes</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver - growth &amp; development</topic><topic>Liver Transplantation</topic><topic>Liver transplants</topic><topic>Male</topic><topic>Metabolism</topic><topic>Modelling</topic><topic>Models, Animal</topic><topic>Models, Biological</topic><topic>Multiscale analysis</topic><topic>Organ Size</topic><topic>Organelles</topic><topic>Organisms</topic><topic>Organs</topic><topic>Physiological aspects</topic><topic>Regeneration</topic><topic>Spatial distribution</topic><topic>Studies</topic><topic>Surgery</topic><topic>Time Factors</topic><topic>Transplants</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shestopaloff, Yuri K</creatorcontrib><creatorcontrib>Sbalzarini, Ivo F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shestopaloff, Yuri K</au><au>Sbalzarini, Ivo F</au><au>Vinciguerra, Manlio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-09</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e99275</spage><epage>e99275</epage><pages>e99275-e99275</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and organs interrelate. This inherent interdependency between diverse biological mechanisms, both on the same and on different scales, provides the functioning of an organism capable of maintaining homeostasis and physiological stability through numerous feedback loops. Thus, developing models of organisms and their constituents should be done within the overall systemic context of the studied phenomena. We introduce such a method for modeling growth and regeneration of livers at the organ scale, considering it a part of the overall multi-scale biochemical and biophysical processes of an organism. Our method is based on the earlier discovered general growth law, postulating that any biological growth process comprises a uniquely defined distribution of nutritional resources between maintenance needs and biomass production. Based on this law, we introduce a liver growth model that allows to accurately predicting the growth of liver transplants in dogs and liver grafts in humans. Using this model, we find quantitative growth characteristics, such as the time point when the transition period after surgery is over and the liver resumes normal growth, rates at which hepatocytes are involved in proliferation, etc. We then use the model to determine and quantify otherwise unobservable metabolic properties of livers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24911324</pmid><doi>10.1371/journal.pone.0099275</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e99275-e99275
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1534316391
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Animals
Biological activity
Biology
Biology and Life Sciences
Dogs
Feedback
Feedback loops
Female
Grafts
Hepatocytes
Homeostasis
Humans
Liver
Liver - growth & development
Liver Transplantation
Liver transplants
Male
Metabolism
Modelling
Models, Animal
Models, Biological
Multiscale analysis
Organ Size
Organelles
Organisms
Organs
Physiological aspects
Regeneration
Spatial distribution
Studies
Surgery
Time Factors
Transplants
Transplants & implants
title A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20modeling%20growth%20of%20organs%20and%20transplants%20based%20on%20the%20general%20growth%20law:%20application%20to%20the%20liver%20in%20dogs%20and%20humans&rft.jtitle=PloS%20one&rft.au=Shestopaloff,%20Yuri%20K&rft.date=2014-06-09&rft.volume=9&rft.issue=6&rft.spage=e99275&rft.epage=e99275&rft.pages=e99275-e99275&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0099275&rft_dat=%3Cgale_plos_%3EA418634205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534316391&rft_id=info:pmid/24911324&rft_galeid=A418634205&rft_doaj_id=oai_doaj_org_article_a49fb5c0809c46d39c830b94969676b0&rfr_iscdi=true