Identifying and characterizing key nodes among communities based on electrical-circuit networks
Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in compl...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-06, Vol.9 (6), p.e97021-e97021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e97021 |
---|---|
container_issue | 6 |
container_start_page | e97021 |
container_title | PloS one |
container_volume | 9 |
creator | Zhu, Fenghui Wang, Wenxu Di, Zengru Fan, Ying |
description | Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes. |
doi_str_mv | 10.1371/journal.pone.0097021 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1532659673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416975494</galeid><doaj_id>oai_doaj_org_article_7b5d843737124d3c93e3cf26866a44db</doaj_id><sourcerecordid>A416975494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8d31dfd9dfd1b61d407810ee00e38270ca20ba4cce2da13d4dd8046bcb4a7b9a3</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9EBQfRh19zmkhehFC8LhYK315BJzuxmO5Nsk4y6fnqzu9OyI32QIUxy8jv_JP_kZNlzjOaYVvjd2g3eym6-cRbmCPEKEfwgO8WckllJEH141D_JnoSwRqigdVk-zk4Iq3mFSXGaiYUGG027NXaZS6tztZJeqgje_NmFrmGbW6ch5LJ3aaxc3w_WRJMijQygc2dz6EBFb5TsZsp4NZiYW4i_nL8OT7NHrewCPBv_Z9n3jx--XXyeXV59WlycX85UyUmc1Zpi3WqeGm5KrBmqaowAEAJakwopSVAjmVJAtMRUM61rxMpGNUxWDZf0LHt50N10LojRmyBwQUlZ8LKiiVgcCO3kWmy86aXfCieN2AecXwrpo1EdiKopdM1olWwmTFPFKVDVkjKZJxnTTdJ6P642ND1olSz0spuITmesWYml-ykYYkWx38ybUcC7mwFCFL0JCrpOWnDDft8McZ6uKaGv_kHvP91ILWU6gLGtS-uqnag4Z7jkVcE4S9T8Hip9Gnqj0kNqTYpPEt5OEhIT4XdcyiEEsfj65f_Zqx9T9vURuwLZxVVw3RCNs2EKsgOovAvBQ3tnMkZiVwe3bohdHYixDlLai-MLuku6ffj0LxWSBF0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1532659673</pqid></control><display><type>article</type><title>Identifying and characterizing key nodes among communities based on electrical-circuit networks</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Zhu, Fenghui ; Wang, Wenxu ; Di, Zengru ; Fan, Ying</creator><creatorcontrib>Zhu, Fenghui ; Wang, Wenxu ; Di, Zengru ; Fan, Ying</creatorcontrib><description>Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0097021</identifier><identifier>PMID: 24897125</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Communities ; Community Networks ; Community structure ; Computer and Information Sciences ; Conservation ; Electricity ; Engineering and Technology ; Humans ; Knowledge management ; Local flow ; Methods ; Models, Theoretical ; Networks ; Neural networks ; Nodes ; Social networks ; Social organization ; Social Sciences ; Systems science</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e97021-e97021</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zhu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zhu et al 2014 Zhu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8d31dfd9dfd1b61d407810ee00e38270ca20ba4cce2da13d4dd8046bcb4a7b9a3</citedby><cites>FETCH-LOGICAL-c692t-8d31dfd9dfd1b61d407810ee00e38270ca20ba4cce2da13d4dd8046bcb4a7b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045573/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045573/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24897125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Fenghui</creatorcontrib><creatorcontrib>Wang, Wenxu</creatorcontrib><creatorcontrib>Di, Zengru</creatorcontrib><creatorcontrib>Fan, Ying</creatorcontrib><title>Identifying and characterizing key nodes among communities based on electrical-circuit networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Communities</subject><subject>Community Networks</subject><subject>Community structure</subject><subject>Computer and Information Sciences</subject><subject>Conservation</subject><subject>Electricity</subject><subject>Engineering and Technology</subject><subject>Humans</subject><subject>Knowledge management</subject><subject>Local flow</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>Systems science</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9EBQfRh19zmkhehFC8LhYK315BJzuxmO5Nsk4y6fnqzu9OyI32QIUxy8jv_JP_kZNlzjOaYVvjd2g3eym6-cRbmCPEKEfwgO8WckllJEH141D_JnoSwRqigdVk-zk4Iq3mFSXGaiYUGG027NXaZS6tztZJeqgje_NmFrmGbW6ch5LJ3aaxc3w_WRJMijQygc2dz6EBFb5TsZsp4NZiYW4i_nL8OT7NHrewCPBv_Z9n3jx--XXyeXV59WlycX85UyUmc1Zpi3WqeGm5KrBmqaowAEAJakwopSVAjmVJAtMRUM61rxMpGNUxWDZf0LHt50N10LojRmyBwQUlZ8LKiiVgcCO3kWmy86aXfCieN2AecXwrpo1EdiKopdM1olWwmTFPFKVDVkjKZJxnTTdJ6P642ND1olSz0spuITmesWYml-ykYYkWx38ybUcC7mwFCFL0JCrpOWnDDft8McZ6uKaGv_kHvP91ILWU6gLGtS-uqnag4Z7jkVcE4S9T8Hip9Gnqj0kNqTYpPEt5OEhIT4XdcyiEEsfj65f_Zqx9T9vURuwLZxVVw3RCNs2EKsgOovAvBQ3tnMkZiVwe3bohdHYixDlLai-MLuku6ffj0LxWSBF0</recordid><startdate>20140604</startdate><enddate>20140604</enddate><creator>Zhu, Fenghui</creator><creator>Wang, Wenxu</creator><creator>Di, Zengru</creator><creator>Fan, Ying</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140604</creationdate><title>Identifying and characterizing key nodes among communities based on electrical-circuit networks</title><author>Zhu, Fenghui ; Wang, Wenxu ; Di, Zengru ; Fan, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8d31dfd9dfd1b61d407810ee00e38270ca20ba4cce2da13d4dd8046bcb4a7b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Communities</topic><topic>Community Networks</topic><topic>Community structure</topic><topic>Computer and Information Sciences</topic><topic>Conservation</topic><topic>Electricity</topic><topic>Engineering and Technology</topic><topic>Humans</topic><topic>Knowledge management</topic><topic>Local flow</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>Systems science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fenghui</creatorcontrib><creatorcontrib>Wang, Wenxu</creatorcontrib><creatorcontrib>Di, Zengru</creatorcontrib><creatorcontrib>Fan, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fenghui</au><au>Wang, Wenxu</au><au>Di, Zengru</au><au>Fan, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying and characterizing key nodes among communities based on electrical-circuit networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-04</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e97021</spage><epage>e97021</epage><pages>e97021-e97021</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24897125</pmid><doi>10.1371/journal.pone.0097021</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-06, Vol.9 (6), p.e97021-e97021 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1532659673 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Algorithms Biology and Life Sciences Communities Community Networks Community structure Computer and Information Sciences Conservation Electricity Engineering and Technology Humans Knowledge management Local flow Methods Models, Theoretical Networks Neural networks Nodes Social networks Social organization Social Sciences Systems science |
title | Identifying and characterizing key nodes among communities based on electrical-circuit networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20and%20characterizing%20key%20nodes%20among%20communities%20based%20on%20electrical-circuit%20networks&rft.jtitle=PloS%20one&rft.au=Zhu,%20Fenghui&rft.date=2014-06-04&rft.volume=9&rft.issue=6&rft.spage=e97021&rft.epage=e97021&rft.pages=e97021-e97021&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0097021&rft_dat=%3Cgale_plos_%3EA416975494%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1532659673&rft_id=info:pmid/24897125&rft_galeid=A416975494&rft_doaj_id=oai_doaj_org_article_7b5d843737124d3c93e3cf26866a44db&rfr_iscdi=true |