A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor
Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-05, Vol.9 (5), p.e98250-e98250 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e98250 |
---|---|
container_issue | 5 |
container_start_page | e98250 |
container_title | PloS one |
container_volume | 9 |
creator | Albi, Elisabetta Curcio, Francesco Lazzarini, Andrea Floridi, Alessandro Cataldi, Samuela Lazzarini, Remo Loreti, Elisabetta Ferri, Ivana Ambesi-Impiombato, Francesco Saverio |
description | Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed. |
doi_str_mv | 10.1371/journal.pone.0098250 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1528982336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793867</galeid><doaj_id>oai_doaj_org_article_0c5cabdd675b40caa5915278ddf65b96</doaj_id><sourcerecordid>A417793867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjGnTqw_CsHgZWFjw9hrS5LTNkElqki7Ot_fU6S5T2QfpQ5qc3_nnXHKi6HlC1gktk3c7OzrD9XqwBtaE1FWakwfReVLTdFWkhD48-T-Lnni_IySnVVE8js7SDNcqrc8jvYlb5fbg4tFIcD5wI5XpYtvGoYcY2hZEmHb9YQDXOX6jwiG2Bq0HZ5WMg_J-hPex6K0GH8BZHaPG0R6cHZSJHQgYgnVPo0ct1x6ezetF9OPTx--XX1ZX15-3l5urlSjzKqxELmRFOecAXDQko5K0NbRFXhJRlW1GoCkAJYuGIFeJoqCYfkN4IqRsWkEvopdH3UFbz-ZCeZbkaYVlorRAYnskpOU7Nji15-7ALFfs74F1HeMuKKGBEQyHN1IWZd5kRHCe1yhUVlJiRE09aX2YbxubPUgBJjiuF6JLi1E96-wNywjNaVqiwJtZwNlfIxaR7ZUXoDU3YMcpbkoodrEiiL76B70_u5nqOCagTIuN4GISZZssKcsan8F07foeCj8JeyXwVbUKzxcObxcOyAT4HTo-es-2377-P3v9c8m-PmF74Dr03uoxKGv8EsyOoHDWewftXZETwqahuK0Gm4aCzUOBbi9OG3TndDsF9A_y3wri</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528982336</pqid></control><display><type>article</type><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</creator><creatorcontrib>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</creatorcontrib><description>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098250</identifier><identifier>PMID: 24866829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Blotting, Western ; Caveolin ; Caveolin 1 - metabolism ; Caveolin-1 ; Cell cycle ; Ceramide ; Cholesterol ; Cholesterol - metabolism ; Chromatography, Liquid ; Cyclic AMP ; Cyclic AMP - metabolism ; Cytoskeleton ; Deconditioning ; Endocrinology ; Fluorescent Antibody Technique ; Gravitational effects ; Gravity ; Histology ; Homeostasis ; Hypergravity ; Laboratory animals ; Lipid rafts ; Lipids ; Localization ; Long duration space flight ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Physiological aspects ; Proteins ; Rafts ; Receptors, Thyrotropin - metabolism ; Regulation ; Signal Transduction ; Signaling ; Space flight ; Space missions ; Sphingomyelin ; Stat3 protein ; Studies ; Tandem Mass Spectrometry ; Thyroid ; Thyroid gland ; Thyroid Gland - cytology ; Thyroid Gland - physiology ; Thyroid-stimulating hormone ; Thyroid-stimulating hormone receptors ; Thyrotropin ; Thyrotropin - metabolism ; Transcription</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e98250-e98250</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Albi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Albi et al 2014 Albi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</citedby><cites>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24866829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albi, Elisabetta</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Floridi, Alessandro</creatorcontrib><creatorcontrib>Cataldi, Samuela</creatorcontrib><creatorcontrib>Lazzarini, Remo</creatorcontrib><creatorcontrib>Loreti, Elisabetta</creatorcontrib><creatorcontrib>Ferri, Ivana</creatorcontrib><creatorcontrib>Ambesi-Impiombato, Francesco Saverio</creatorcontrib><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blotting, Western</subject><subject>Caveolin</subject><subject>Caveolin 1 - metabolism</subject><subject>Caveolin-1</subject><subject>Cell cycle</subject><subject>Ceramide</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cytoskeleton</subject><subject>Deconditioning</subject><subject>Endocrinology</subject><subject>Fluorescent Antibody Technique</subject><subject>Gravitational effects</subject><subject>Gravity</subject><subject>Histology</subject><subject>Homeostasis</subject><subject>Hypergravity</subject><subject>Laboratory animals</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Localization</subject><subject>Long duration space flight</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rafts</subject><subject>Receptors, Thyrotropin - metabolism</subject><subject>Regulation</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Space flight</subject><subject>Space missions</subject><subject>Sphingomyelin</subject><subject>Stat3 protein</subject><subject>Studies</subject><subject>Tandem Mass Spectrometry</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid Gland - cytology</subject><subject>Thyroid Gland - physiology</subject><subject>Thyroid-stimulating hormone</subject><subject>Thyroid-stimulating hormone receptors</subject><subject>Thyrotropin</subject><subject>Thyrotropin - metabolism</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjGnTqw_CsHgZWFjw9hrS5LTNkElqki7Ot_fU6S5T2QfpQ5qc3_nnXHKi6HlC1gktk3c7OzrD9XqwBtaE1FWakwfReVLTdFWkhD48-T-Lnni_IySnVVE8js7SDNcqrc8jvYlb5fbg4tFIcD5wI5XpYtvGoYcY2hZEmHb9YQDXOX6jwiG2Bq0HZ5WMg_J-hPex6K0GH8BZHaPG0R6cHZSJHQgYgnVPo0ct1x6ezetF9OPTx--XX1ZX15-3l5urlSjzKqxELmRFOecAXDQko5K0NbRFXhJRlW1GoCkAJYuGIFeJoqCYfkN4IqRsWkEvopdH3UFbz-ZCeZbkaYVlorRAYnskpOU7Nji15-7ALFfs74F1HeMuKKGBEQyHN1IWZd5kRHCe1yhUVlJiRE09aX2YbxubPUgBJjiuF6JLi1E96-wNywjNaVqiwJtZwNlfIxaR7ZUXoDU3YMcpbkoodrEiiL76B70_u5nqOCagTIuN4GISZZssKcsan8F07foeCj8JeyXwVbUKzxcObxcOyAT4HTo-es-2377-P3v9c8m-PmF74Dr03uoxKGv8EsyOoHDWewftXZETwqahuK0Gm4aCzUOBbi9OG3TndDsF9A_y3wri</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Albi, Elisabetta</creator><creator>Curcio, Francesco</creator><creator>Lazzarini, Andrea</creator><creator>Floridi, Alessandro</creator><creator>Cataldi, Samuela</creator><creator>Lazzarini, Remo</creator><creator>Loreti, Elisabetta</creator><creator>Ferri, Ivana</creator><creator>Ambesi-Impiombato, Francesco Saverio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140527</creationdate><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><author>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blotting, Western</topic><topic>Caveolin</topic><topic>Caveolin 1 - metabolism</topic><topic>Caveolin-1</topic><topic>Cell cycle</topic><topic>Ceramide</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cytoskeleton</topic><topic>Deconditioning</topic><topic>Endocrinology</topic><topic>Fluorescent Antibody Technique</topic><topic>Gravitational effects</topic><topic>Gravity</topic><topic>Histology</topic><topic>Homeostasis</topic><topic>Hypergravity</topic><topic>Laboratory animals</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Localization</topic><topic>Long duration space flight</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rafts</topic><topic>Receptors, Thyrotropin - metabolism</topic><topic>Regulation</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Space flight</topic><topic>Space missions</topic><topic>Sphingomyelin</topic><topic>Stat3 protein</topic><topic>Studies</topic><topic>Tandem Mass Spectrometry</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid Gland - cytology</topic><topic>Thyroid Gland - physiology</topic><topic>Thyroid-stimulating hormone</topic><topic>Thyroid-stimulating hormone receptors</topic><topic>Thyrotropin</topic><topic>Thyrotropin - metabolism</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albi, Elisabetta</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Floridi, Alessandro</creatorcontrib><creatorcontrib>Cataldi, Samuela</creatorcontrib><creatorcontrib>Lazzarini, Remo</creatorcontrib><creatorcontrib>Loreti, Elisabetta</creatorcontrib><creatorcontrib>Ferri, Ivana</creatorcontrib><creatorcontrib>Ambesi-Impiombato, Francesco Saverio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albi, Elisabetta</au><au>Curcio, Francesco</au><au>Lazzarini, Andrea</au><au>Floridi, Alessandro</au><au>Cataldi, Samuela</au><au>Lazzarini, Remo</au><au>Loreti, Elisabetta</au><au>Ferri, Ivana</au><au>Ambesi-Impiombato, Francesco Saverio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e98250</spage><epage>e98250</epage><pages>e98250-e98250</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24866829</pmid><doi>10.1371/journal.pone.0098250</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-05, Vol.9 (5), p.e98250-e98250 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1528982336 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Biology and Life Sciences Blotting, Western Caveolin Caveolin 1 - metabolism Caveolin-1 Cell cycle Ceramide Cholesterol Cholesterol - metabolism Chromatography, Liquid Cyclic AMP Cyclic AMP - metabolism Cytoskeleton Deconditioning Endocrinology Fluorescent Antibody Technique Gravitational effects Gravity Histology Homeostasis Hypergravity Laboratory animals Lipid rafts Lipids Localization Long duration space flight Medicine and Health Sciences Mice Mice, Inbred C57BL Physiological aspects Proteins Rafts Receptors, Thyrotropin - metabolism Regulation Signal Transduction Signaling Space flight Space missions Sphingomyelin Stat3 protein Studies Tandem Mass Spectrometry Thyroid Thyroid gland Thyroid Gland - cytology Thyroid Gland - physiology Thyroid-stimulating hormone Thyroid-stimulating hormone receptors Thyrotropin Thyrotropin - metabolism Transcription |
title | A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20firmer%20understanding%20of%20the%20effect%20of%20hypergravity%20on%20thyroid%20tissue:%20cholesterol%20and%20thyrotropin%20receptor&rft.jtitle=PloS%20one&rft.au=Albi,%20Elisabetta&rft.date=2014-05-27&rft.volume=9&rft.issue=5&rft.spage=e98250&rft.epage=e98250&rft.pages=e98250-e98250&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098250&rft_dat=%3Cgale_plos_%3EA417793867%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528982336&rft_id=info:pmid/24866829&rft_galeid=A417793867&rft_doaj_id=oai_doaj_org_article_0c5cabdd675b40caa5915278ddf65b96&rfr_iscdi=true |