A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor

Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-05, Vol.9 (5), p.e98250-e98250
Hauptverfasser: Albi, Elisabetta, Curcio, Francesco, Lazzarini, Andrea, Floridi, Alessandro, Cataldi, Samuela, Lazzarini, Remo, Loreti, Elisabetta, Ferri, Ivana, Ambesi-Impiombato, Francesco Saverio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e98250
container_issue 5
container_start_page e98250
container_title PloS one
container_volume 9
creator Albi, Elisabetta
Curcio, Francesco
Lazzarini, Andrea
Floridi, Alessandro
Cataldi, Samuela
Lazzarini, Remo
Loreti, Elisabetta
Ferri, Ivana
Ambesi-Impiombato, Francesco Saverio
description Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.
doi_str_mv 10.1371/journal.pone.0098250
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1528982336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793867</galeid><doaj_id>oai_doaj_org_article_0c5cabdd675b40caa5915278ddf65b96</doaj_id><sourcerecordid>A417793867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjGnTqw_CsHgZWFjw9hrS5LTNkElqki7Ot_fU6S5T2QfpQ5qc3_nnXHKi6HlC1gktk3c7OzrD9XqwBtaE1FWakwfReVLTdFWkhD48-T-Lnni_IySnVVE8js7SDNcqrc8jvYlb5fbg4tFIcD5wI5XpYtvGoYcY2hZEmHb9YQDXOX6jwiG2Bq0HZ5WMg_J-hPex6K0GH8BZHaPG0R6cHZSJHQgYgnVPo0ct1x6ezetF9OPTx--XX1ZX15-3l5urlSjzKqxELmRFOecAXDQko5K0NbRFXhJRlW1GoCkAJYuGIFeJoqCYfkN4IqRsWkEvopdH3UFbz-ZCeZbkaYVlorRAYnskpOU7Nji15-7ALFfs74F1HeMuKKGBEQyHN1IWZd5kRHCe1yhUVlJiRE09aX2YbxubPUgBJjiuF6JLi1E96-wNywjNaVqiwJtZwNlfIxaR7ZUXoDU3YMcpbkoodrEiiL76B70_u5nqOCagTIuN4GISZZssKcsan8F07foeCj8JeyXwVbUKzxcObxcOyAT4HTo-es-2377-P3v9c8m-PmF74Dr03uoxKGv8EsyOoHDWewftXZETwqahuK0Gm4aCzUOBbi9OG3TndDsF9A_y3wri</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528982336</pqid></control><display><type>article</type><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</creator><creatorcontrib>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</creatorcontrib><description>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098250</identifier><identifier>PMID: 24866829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Blotting, Western ; Caveolin ; Caveolin 1 - metabolism ; Caveolin-1 ; Cell cycle ; Ceramide ; Cholesterol ; Cholesterol - metabolism ; Chromatography, Liquid ; Cyclic AMP ; Cyclic AMP - metabolism ; Cytoskeleton ; Deconditioning ; Endocrinology ; Fluorescent Antibody Technique ; Gravitational effects ; Gravity ; Histology ; Homeostasis ; Hypergravity ; Laboratory animals ; Lipid rafts ; Lipids ; Localization ; Long duration space flight ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Physiological aspects ; Proteins ; Rafts ; Receptors, Thyrotropin - metabolism ; Regulation ; Signal Transduction ; Signaling ; Space flight ; Space missions ; Sphingomyelin ; Stat3 protein ; Studies ; Tandem Mass Spectrometry ; Thyroid ; Thyroid gland ; Thyroid Gland - cytology ; Thyroid Gland - physiology ; Thyroid-stimulating hormone ; Thyroid-stimulating hormone receptors ; Thyrotropin ; Thyrotropin - metabolism ; Transcription</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e98250-e98250</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Albi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Albi et al 2014 Albi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</citedby><cites>FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24866829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albi, Elisabetta</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Floridi, Alessandro</creatorcontrib><creatorcontrib>Cataldi, Samuela</creatorcontrib><creatorcontrib>Lazzarini, Remo</creatorcontrib><creatorcontrib>Loreti, Elisabetta</creatorcontrib><creatorcontrib>Ferri, Ivana</creatorcontrib><creatorcontrib>Ambesi-Impiombato, Francesco Saverio</creatorcontrib><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blotting, Western</subject><subject>Caveolin</subject><subject>Caveolin 1 - metabolism</subject><subject>Caveolin-1</subject><subject>Cell cycle</subject><subject>Ceramide</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cytoskeleton</subject><subject>Deconditioning</subject><subject>Endocrinology</subject><subject>Fluorescent Antibody Technique</subject><subject>Gravitational effects</subject><subject>Gravity</subject><subject>Histology</subject><subject>Homeostasis</subject><subject>Hypergravity</subject><subject>Laboratory animals</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Localization</subject><subject>Long duration space flight</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rafts</subject><subject>Receptors, Thyrotropin - metabolism</subject><subject>Regulation</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Space flight</subject><subject>Space missions</subject><subject>Sphingomyelin</subject><subject>Stat3 protein</subject><subject>Studies</subject><subject>Tandem Mass Spectrometry</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid Gland - cytology</subject><subject>Thyroid Gland - physiology</subject><subject>Thyroid-stimulating hormone</subject><subject>Thyroid-stimulating hormone receptors</subject><subject>Thyrotropin</subject><subject>Thyrotropin - metabolism</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjGnTqw_CsHgZWFjw9hrS5LTNkElqki7Ot_fU6S5T2QfpQ5qc3_nnXHKi6HlC1gktk3c7OzrD9XqwBtaE1FWakwfReVLTdFWkhD48-T-Lnni_IySnVVE8js7SDNcqrc8jvYlb5fbg4tFIcD5wI5XpYtvGoYcY2hZEmHb9YQDXOX6jwiG2Bq0HZ5WMg_J-hPex6K0GH8BZHaPG0R6cHZSJHQgYgnVPo0ct1x6ezetF9OPTx--XX1ZX15-3l5urlSjzKqxELmRFOecAXDQko5K0NbRFXhJRlW1GoCkAJYuGIFeJoqCYfkN4IqRsWkEvopdH3UFbz-ZCeZbkaYVlorRAYnskpOU7Nji15-7ALFfs74F1HeMuKKGBEQyHN1IWZd5kRHCe1yhUVlJiRE09aX2YbxubPUgBJjiuF6JLi1E96-wNywjNaVqiwJtZwNlfIxaR7ZUXoDU3YMcpbkoodrEiiL76B70_u5nqOCagTIuN4GISZZssKcsan8F07foeCj8JeyXwVbUKzxcObxcOyAT4HTo-es-2377-P3v9c8m-PmF74Dr03uoxKGv8EsyOoHDWewftXZETwqahuK0Gm4aCzUOBbi9OG3TndDsF9A_y3wri</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Albi, Elisabetta</creator><creator>Curcio, Francesco</creator><creator>Lazzarini, Andrea</creator><creator>Floridi, Alessandro</creator><creator>Cataldi, Samuela</creator><creator>Lazzarini, Remo</creator><creator>Loreti, Elisabetta</creator><creator>Ferri, Ivana</creator><creator>Ambesi-Impiombato, Francesco Saverio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140527</creationdate><title>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</title><author>Albi, Elisabetta ; Curcio, Francesco ; Lazzarini, Andrea ; Floridi, Alessandro ; Cataldi, Samuela ; Lazzarini, Remo ; Loreti, Elisabetta ; Ferri, Ivana ; Ambesi-Impiombato, Francesco Saverio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-c5cd83aaaeeacb043d0f9ef6570c87f40eb6eece6b0d838c663098b0a1cddbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blotting, Western</topic><topic>Caveolin</topic><topic>Caveolin 1 - metabolism</topic><topic>Caveolin-1</topic><topic>Cell cycle</topic><topic>Ceramide</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cytoskeleton</topic><topic>Deconditioning</topic><topic>Endocrinology</topic><topic>Fluorescent Antibody Technique</topic><topic>Gravitational effects</topic><topic>Gravity</topic><topic>Histology</topic><topic>Homeostasis</topic><topic>Hypergravity</topic><topic>Laboratory animals</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Localization</topic><topic>Long duration space flight</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rafts</topic><topic>Receptors, Thyrotropin - metabolism</topic><topic>Regulation</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Space flight</topic><topic>Space missions</topic><topic>Sphingomyelin</topic><topic>Stat3 protein</topic><topic>Studies</topic><topic>Tandem Mass Spectrometry</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid Gland - cytology</topic><topic>Thyroid Gland - physiology</topic><topic>Thyroid-stimulating hormone</topic><topic>Thyroid-stimulating hormone receptors</topic><topic>Thyrotropin</topic><topic>Thyrotropin - metabolism</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albi, Elisabetta</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Floridi, Alessandro</creatorcontrib><creatorcontrib>Cataldi, Samuela</creatorcontrib><creatorcontrib>Lazzarini, Remo</creatorcontrib><creatorcontrib>Loreti, Elisabetta</creatorcontrib><creatorcontrib>Ferri, Ivana</creatorcontrib><creatorcontrib>Ambesi-Impiombato, Francesco Saverio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albi, Elisabetta</au><au>Curcio, Francesco</au><au>Lazzarini, Andrea</au><au>Floridi, Alessandro</au><au>Cataldi, Samuela</au><au>Lazzarini, Remo</au><au>Loreti, Elisabetta</au><au>Ferri, Ivana</au><au>Ambesi-Impiombato, Francesco Saverio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e98250</spage><epage>e98250</epage><pages>e98250-e98250</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24866829</pmid><doi>10.1371/journal.pone.0098250</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-05, Vol.9 (5), p.e98250-e98250
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1528982336
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Biology and Life Sciences
Blotting, Western
Caveolin
Caveolin 1 - metabolism
Caveolin-1
Cell cycle
Ceramide
Cholesterol
Cholesterol - metabolism
Chromatography, Liquid
Cyclic AMP
Cyclic AMP - metabolism
Cytoskeleton
Deconditioning
Endocrinology
Fluorescent Antibody Technique
Gravitational effects
Gravity
Histology
Homeostasis
Hypergravity
Laboratory animals
Lipid rafts
Lipids
Localization
Long duration space flight
Medicine and Health Sciences
Mice
Mice, Inbred C57BL
Physiological aspects
Proteins
Rafts
Receptors, Thyrotropin - metabolism
Regulation
Signal Transduction
Signaling
Space flight
Space missions
Sphingomyelin
Stat3 protein
Studies
Tandem Mass Spectrometry
Thyroid
Thyroid gland
Thyroid Gland - cytology
Thyroid Gland - physiology
Thyroid-stimulating hormone
Thyroid-stimulating hormone receptors
Thyrotropin
Thyrotropin - metabolism
Transcription
title A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20firmer%20understanding%20of%20the%20effect%20of%20hypergravity%20on%20thyroid%20tissue:%20cholesterol%20and%20thyrotropin%20receptor&rft.jtitle=PloS%20one&rft.au=Albi,%20Elisabetta&rft.date=2014-05-27&rft.volume=9&rft.issue=5&rft.spage=e98250&rft.epage=e98250&rft.pages=e98250-e98250&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098250&rft_dat=%3Cgale_plos_%3EA417793867%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528982336&rft_id=info:pmid/24866829&rft_galeid=A417793867&rft_doaj_id=oai_doaj_org_article_0c5cabdd675b40caa5915278ddf65b96&rfr_iscdi=true