A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization
The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regulariz...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-05, Vol.9 (5), p.e98122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e98122 |
container_title | PloS one |
container_volume | 9 |
creator | Gagliano, Sarah A Barnes, Michael R Weale, Michael E Knight, Jo |
description | The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data. |
doi_str_mv | 10.1371/journal.pone.0098122 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1526225262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418139553</galeid><doaj_id>oai_doaj_org_article_dea5727b86e64406a5dada1990ec3ec6</doaj_id><sourcerecordid>A418139553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e8c131e2ae1a7563e634e899cb2153cc2d3f32bcf9348047253314bda4a48e9e3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQDgujDjM2ltxdhXLwMLCx4ew1n0tNphrYZk3R0ffWLm850l6nsgwSSkPzO_1ySE0VPabygPKNvtqa3HTSLnelwEcdFThm7F53TgrN5ymJ-_2R_Fj1ybhvHCc_T9GF0xkQuRJGz8-jPkryDa3QaOtKir01JvCG6U8bujAWPpO670mLpiKlI1XfKaxPcElWDBeXRaue1cuSn9jUB54zSMCAE97rETuFBr91Zs0eyBxscebKz2ljt9e8D-jh6UEHj8Mm4zqJvH95_vfg0v7z6uLpYXs5VWjA_x1xRTpEBUsiSlGPKBeZFodaMJlwpVvKKs7WqCi7yWGQs4ZyKdQkCRI4F8ln0_Ki7a4yTY_2cpAlLGRumQKyORGlgK0OULdhraUDLw4GxGwk2pNugLBGSjGXrPMVUiDiFpIQSaFHEqDiqNGi9Hb316xZLhZ230ExEpzedruXG7KWIWc5yEQRejQLW_OjRedlqp7BpoEPTH-LOOEsLngT0xT_o3dmN1AZCArqrTPCrBlG5FDSnvEhCyWbR4g4qjBJbrcJnq3Q4nxi8nhgExuMvv4HeObn68vn_2avvU_blCVsjNL52pumHL-OmoDiCyhrnLFa3RaaxHHrlphpy6BU59kowe3b6QLdGN83B_wKU1BHI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526225262</pqid></control><display><type>article</type><title>A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Gagliano, Sarah A ; Barnes, Michael R ; Weale, Michael E ; Knight, Jo</creator><creatorcontrib>Gagliano, Sarah A ; Barnes, Michael R ; Weale, Michael E ; Knight, Jo</creatorcontrib><description>The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098122</identifier><identifier>PMID: 24844982</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bioinformatics ; Biology and Life Sciences ; Brain ; Cancer ; Cluster Analysis ; Computational Biology ; Consortia ; Databases, Genetic ; Deoxyribonucleic acid ; Disease ; DNA ; DNA methylation ; Encyclopedias ; Gene expression ; Gene mapping ; Generalized linear models ; Genetics ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Humans ; Mental health ; Methods ; Models, Theoretical ; Phenotype ; Phenotypes ; Polymorphism, Single Nucleotide ; Psoriasis ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait, Heritable ; Regression analysis ; Regression models ; Reproducibility of Results ; ROC Curve ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Skin diseases ; Studies ; Transcription factors</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e98122</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Gagliano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Gagliano et al 2014 Gagliano et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e8c131e2ae1a7563e634e899cb2153cc2d3f32bcf9348047253314bda4a48e9e3</citedby><cites>FETCH-LOGICAL-c692t-e8c131e2ae1a7563e634e899cb2153cc2d3f32bcf9348047253314bda4a48e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24844982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gagliano, Sarah A</creatorcontrib><creatorcontrib>Barnes, Michael R</creatorcontrib><creatorcontrib>Weale, Michael E</creatorcontrib><creatorcontrib>Knight, Jo</creatorcontrib><title>A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Cancer</subject><subject>Cluster Analysis</subject><subject>Computational Biology</subject><subject>Consortia</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Encyclopedias</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Generalized linear models</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Mental health</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Psoriasis</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait, Heritable</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Reproducibility of Results</subject><subject>ROC Curve</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Skin diseases</subject><subject>Studies</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQDgujDjM2ltxdhXLwMLCx4ew1n0tNphrYZk3R0ffWLm850l6nsgwSSkPzO_1ySE0VPabygPKNvtqa3HTSLnelwEcdFThm7F53TgrN5ymJ-_2R_Fj1ybhvHCc_T9GF0xkQuRJGz8-jPkryDa3QaOtKir01JvCG6U8bujAWPpO670mLpiKlI1XfKaxPcElWDBeXRaue1cuSn9jUB54zSMCAE97rETuFBr91Zs0eyBxscebKz2ljt9e8D-jh6UEHj8Mm4zqJvH95_vfg0v7z6uLpYXs5VWjA_x1xRTpEBUsiSlGPKBeZFodaMJlwpVvKKs7WqCi7yWGQs4ZyKdQkCRI4F8ln0_Ki7a4yTY_2cpAlLGRumQKyORGlgK0OULdhraUDLw4GxGwk2pNugLBGSjGXrPMVUiDiFpIQSaFHEqDiqNGi9Hb316xZLhZ230ExEpzedruXG7KWIWc5yEQRejQLW_OjRedlqp7BpoEPTH-LOOEsLngT0xT_o3dmN1AZCArqrTPCrBlG5FDSnvEhCyWbR4g4qjBJbrcJnq3Q4nxi8nhgExuMvv4HeObn68vn_2avvU_blCVsjNL52pumHL-OmoDiCyhrnLFa3RaaxHHrlphpy6BU59kowe3b6QLdGN83B_wKU1BHI</recordid><startdate>20140520</startdate><enddate>20140520</enddate><creator>Gagliano, Sarah A</creator><creator>Barnes, Michael R</creator><creator>Weale, Michael E</creator><creator>Knight, Jo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140520</creationdate><title>A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization</title><author>Gagliano, Sarah A ; Barnes, Michael R ; Weale, Michael E ; Knight, Jo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e8c131e2ae1a7563e634e899cb2153cc2d3f32bcf9348047253314bda4a48e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Cancer</topic><topic>Cluster Analysis</topic><topic>Computational Biology</topic><topic>Consortia</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Encyclopedias</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Generalized linear models</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Mental health</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Psoriasis</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait, Heritable</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Reproducibility of Results</topic><topic>ROC Curve</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Skin diseases</topic><topic>Studies</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagliano, Sarah A</creatorcontrib><creatorcontrib>Barnes, Michael R</creatorcontrib><creatorcontrib>Weale, Michael E</creatorcontrib><creatorcontrib>Knight, Jo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagliano, Sarah A</au><au>Barnes, Michael R</au><au>Weale, Michael E</au><au>Knight, Jo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-20</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e98122</spage><pages>e98122-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24844982</pmid><doi>10.1371/journal.pone.0098122</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-05, Vol.9 (5), p.e98122 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1526225262 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Bayes Theorem Bayesian analysis Bioinformatics Biology and Life Sciences Brain Cancer Cluster Analysis Computational Biology Consortia Databases, Genetic Deoxyribonucleic acid Disease DNA DNA methylation Encyclopedias Gene expression Gene mapping Generalized linear models Genetics Genome-wide association studies Genome-Wide Association Study Genomes Genomics Humans Mental health Methods Models, Theoretical Phenotype Phenotypes Polymorphism, Single Nucleotide Psoriasis Quantitative genetics Quantitative trait loci Quantitative Trait, Heritable Regression analysis Regression models Reproducibility of Results ROC Curve Single nucleotide polymorphisms Single-nucleotide polymorphism Skin diseases Studies Transcription factors |
title | A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20method%20to%20incorporate%20hundreds%20of%20functional%20characteristics%20with%20association%20evidence%20to%20improve%20variant%20prioritization&rft.jtitle=PloS%20one&rft.au=Gagliano,%20Sarah%20A&rft.date=2014-05-20&rft.volume=9&rft.issue=5&rft.spage=e98122&rft.pages=e98122-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098122&rft_dat=%3Cgale_plos_%3EA418139553%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526225262&rft_id=info:pmid/24844982&rft_galeid=A418139553&rft_doaj_id=oai_doaj_org_article_dea5727b86e64406a5dada1990ec3ec6&rfr_iscdi=true |