Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization

The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-05, Vol.9 (5), p.e97106
Hauptverfasser: Babuin, María Florencia, Campestre, María Paula, Rocco, Rubén, Bordenave, Cesar D, Escaray, Francisco J, Antonelli, Cristian, Calzadilla, Pablo, Gárriz, Andrés, Serna, Eva, Carrasco, Pedro, Ruiz, Oscar A, Menendez, Ana B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e97106
container_title PloS one
container_volume 9
creator Babuin, María Florencia
Campestre, María Paula
Rocco, Rubén
Bordenave, Cesar D
Escaray, Francisco J
Antonelli, Cristian
Calzadilla, Pablo
Gárriz, Andrés
Serna, Eva
Carrasco, Pedro
Ruiz, Oscar A
Menendez, Ana B
description The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants.
doi_str_mv 10.1371/journal.pone.0097106
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1525342654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_972c8bcbe9ff4cf6be074f6056fc4b5b</doaj_id><sourcerecordid>3305984321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-7711497efc6cfd127c4407daae663934fcc4316dfde62f15da3b669a453b0e2d3</originalsourceid><addsrcrecordid>eNp1ks1uEzEUhUcIREvhDRBYYj3B_5NhgQRRSSulVEKwtjz-SZw648F2Kg0P1Wes20yrdsHKV_Y5372-OlX1HsEZIg36vA372Es_G0JvZhC2DYL8RXWMWoJrjiF5-aQ-qt6ktIWQkTnnr6sjTOeEMdYeVze_TCqEZEAOwId-XWcTd-CnPFtcklqb6K6NBtJfSe96l0fgerAL2niwCnmfwFYWt1OlOlUhj4NJYOnsHnyvEW6B7DW4cKO8Clu3k-BiWWP4BeQo-6SiG3LYOQWGGKwr9PW9fNiMyQUf1k5JD9RGRqnKSO6fzC70b6tXVvpk3k3nSfXnx-nvxVm9ulyeL76tasUwz3XTIETbxljFldUIN4pS2GgpDeekJdQqRQni2mrDsUVMS9Jx3krKSAcN1uSk-njgDj4kMa06CcQwIxRzRovi_KDQQW7FEMv_4iiCdOL-IsS1kDE75Y1oG6zmnepMay1VlncGNtRyyLhVtGNdYX2duu27ndHK9GVF_hn0-UvvNmIdrgWFmEIEC-DTBIjh796k_J-R6UGlYkgpGvvYAUFxl6kHl7jLlJgyVWwfnk73aHoIEbkFADbOqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525342654</pqid></control><display><type>article</type><title>Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Babuin, María Florencia ; Campestre, María Paula ; Rocco, Rubén ; Bordenave, Cesar D ; Escaray, Francisco J ; Antonelli, Cristian ; Calzadilla, Pablo ; Gárriz, Andrés ; Serna, Eva ; Carrasco, Pedro ; Ruiz, Oscar A ; Menendez, Ana B</creator><creatorcontrib>Babuin, María Florencia ; Campestre, María Paula ; Rocco, Rubén ; Bordenave, Cesar D ; Escaray, Francisco J ; Antonelli, Cristian ; Calzadilla, Pablo ; Gárriz, Andrés ; Serna, Eva ; Carrasco, Pedro ; Ruiz, Oscar A ; Menendez, Ana B</creatorcontrib><description>The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0097106</identifier><identifier>PMID: 24835559</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abiotic stress ; Alkalinity ; Antacids - pharmacology ; Arabidopsis ; Biology and Life Sciences ; Chlorophyll ; Chlorophyll - analysis ; Ecotypes ; Fluorescence ; Gas exchange ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant - drug effects ; Gene regulation ; Genes ; Genomes ; Genomics ; Gluconeogenesis ; Glycolysis ; Iron ; Iron - analysis ; Legumes ; Lotus - drug effects ; Lotus - metabolism ; Lotus japonicus ; Medicine and Health Sciences ; Oligonucleotide Array Sequence Analysis ; Oxidative stress ; Physiology ; Plant growth ; Plant Roots - metabolism ; Plant Shoots - metabolism ; Plant Transpiration - physiology ; Proteins ; Real-Time Polymerase Chain Reaction ; Research and Analysis Methods ; Salinity ; Salts ; Senescence ; Shoots ; Signal transduction ; Sodium bicarbonate ; Sodium Bicarbonate - pharmacology ; Species Specificity ; Stress response ; Stresses ; Studies ; Transcription factors ; Zinc ; Zinc - analysis</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e97106</ispartof><rights>2014 Babuin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Babuin et al 2014 Babuin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-7711497efc6cfd127c4407daae663934fcc4316dfde62f15da3b669a453b0e2d3</citedby><cites>FETCH-LOGICAL-c526t-7711497efc6cfd127c4407daae663934fcc4316dfde62f15da3b669a453b0e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024010/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24835559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babuin, María Florencia</creatorcontrib><creatorcontrib>Campestre, María Paula</creatorcontrib><creatorcontrib>Rocco, Rubén</creatorcontrib><creatorcontrib>Bordenave, Cesar D</creatorcontrib><creatorcontrib>Escaray, Francisco J</creatorcontrib><creatorcontrib>Antonelli, Cristian</creatorcontrib><creatorcontrib>Calzadilla, Pablo</creatorcontrib><creatorcontrib>Gárriz, Andrés</creatorcontrib><creatorcontrib>Serna, Eva</creatorcontrib><creatorcontrib>Carrasco, Pedro</creatorcontrib><creatorcontrib>Ruiz, Oscar A</creatorcontrib><creatorcontrib>Menendez, Ana B</creatorcontrib><title>Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants.</description><subject>Abiotic stress</subject><subject>Alkalinity</subject><subject>Antacids - pharmacology</subject><subject>Arabidopsis</subject><subject>Biology and Life Sciences</subject><subject>Chlorophyll</subject><subject>Chlorophyll - analysis</subject><subject>Ecotypes</subject><subject>Fluorescence</subject><subject>Gas exchange</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gluconeogenesis</subject><subject>Glycolysis</subject><subject>Iron</subject><subject>Iron - analysis</subject><subject>Legumes</subject><subject>Lotus - drug effects</subject><subject>Lotus - metabolism</subject><subject>Lotus japonicus</subject><subject>Medicine and Health Sciences</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oxidative stress</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Plant Roots - metabolism</subject><subject>Plant Shoots - metabolism</subject><subject>Plant Transpiration - physiology</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Research and Analysis Methods</subject><subject>Salinity</subject><subject>Salts</subject><subject>Senescence</subject><subject>Shoots</subject><subject>Signal transduction</subject><subject>Sodium bicarbonate</subject><subject>Sodium Bicarbonate - pharmacology</subject><subject>Species Specificity</subject><subject>Stress response</subject><subject>Stresses</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Zinc</subject><subject>Zinc - analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1uEzEUhUcIREvhDRBYYj3B_5NhgQRRSSulVEKwtjz-SZw648F2Kg0P1Wes20yrdsHKV_Y5372-OlX1HsEZIg36vA372Es_G0JvZhC2DYL8RXWMWoJrjiF5-aQ-qt6ktIWQkTnnr6sjTOeEMdYeVze_TCqEZEAOwId-XWcTd-CnPFtcklqb6K6NBtJfSe96l0fgerAL2niwCnmfwFYWt1OlOlUhj4NJYOnsHnyvEW6B7DW4cKO8Clu3k-BiWWP4BeQo-6SiG3LYOQWGGKwr9PW9fNiMyQUf1k5JD9RGRqnKSO6fzC70b6tXVvpk3k3nSfXnx-nvxVm9ulyeL76tasUwz3XTIETbxljFldUIN4pS2GgpDeekJdQqRQni2mrDsUVMS9Jx3krKSAcN1uSk-njgDj4kMa06CcQwIxRzRovi_KDQQW7FEMv_4iiCdOL-IsS1kDE75Y1oG6zmnepMay1VlncGNtRyyLhVtGNdYX2duu27ndHK9GVF_hn0-UvvNmIdrgWFmEIEC-DTBIjh796k_J-R6UGlYkgpGvvYAUFxl6kHl7jLlJgyVWwfnk73aHoIEbkFADbOqw</recordid><startdate>20140516</startdate><enddate>20140516</enddate><creator>Babuin, María Florencia</creator><creator>Campestre, María Paula</creator><creator>Rocco, Rubén</creator><creator>Bordenave, Cesar D</creator><creator>Escaray, Francisco J</creator><creator>Antonelli, Cristian</creator><creator>Calzadilla, Pablo</creator><creator>Gárriz, Andrés</creator><creator>Serna, Eva</creator><creator>Carrasco, Pedro</creator><creator>Ruiz, Oscar A</creator><creator>Menendez, Ana B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140516</creationdate><title>Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization</title><author>Babuin, María Florencia ; Campestre, María Paula ; Rocco, Rubén ; Bordenave, Cesar D ; Escaray, Francisco J ; Antonelli, Cristian ; Calzadilla, Pablo ; Gárriz, Andrés ; Serna, Eva ; Carrasco, Pedro ; Ruiz, Oscar A ; Menendez, Ana B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-7711497efc6cfd127c4407daae663934fcc4316dfde62f15da3b669a453b0e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abiotic stress</topic><topic>Alkalinity</topic><topic>Antacids - pharmacology</topic><topic>Arabidopsis</topic><topic>Biology and Life Sciences</topic><topic>Chlorophyll</topic><topic>Chlorophyll - analysis</topic><topic>Ecotypes</topic><topic>Fluorescence</topic><topic>Gas exchange</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gluconeogenesis</topic><topic>Glycolysis</topic><topic>Iron</topic><topic>Iron - analysis</topic><topic>Legumes</topic><topic>Lotus - drug effects</topic><topic>Lotus - metabolism</topic><topic>Lotus japonicus</topic><topic>Medicine and Health Sciences</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oxidative stress</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Plant Roots - metabolism</topic><topic>Plant Shoots - metabolism</topic><topic>Plant Transpiration - physiology</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Research and Analysis Methods</topic><topic>Salinity</topic><topic>Salts</topic><topic>Senescence</topic><topic>Shoots</topic><topic>Signal transduction</topic><topic>Sodium bicarbonate</topic><topic>Sodium Bicarbonate - pharmacology</topic><topic>Species Specificity</topic><topic>Stress response</topic><topic>Stresses</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Zinc</topic><topic>Zinc - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babuin, María Florencia</creatorcontrib><creatorcontrib>Campestre, María Paula</creatorcontrib><creatorcontrib>Rocco, Rubén</creatorcontrib><creatorcontrib>Bordenave, Cesar D</creatorcontrib><creatorcontrib>Escaray, Francisco J</creatorcontrib><creatorcontrib>Antonelli, Cristian</creatorcontrib><creatorcontrib>Calzadilla, Pablo</creatorcontrib><creatorcontrib>Gárriz, Andrés</creatorcontrib><creatorcontrib>Serna, Eva</creatorcontrib><creatorcontrib>Carrasco, Pedro</creatorcontrib><creatorcontrib>Ruiz, Oscar A</creatorcontrib><creatorcontrib>Menendez, Ana B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babuin, María Florencia</au><au>Campestre, María Paula</au><au>Rocco, Rubén</au><au>Bordenave, Cesar D</au><au>Escaray, Francisco J</au><au>Antonelli, Cristian</au><au>Calzadilla, Pablo</au><au>Gárriz, Andrés</au><au>Serna, Eva</au><au>Carrasco, Pedro</au><au>Ruiz, Oscar A</au><au>Menendez, Ana B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-16</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e97106</spage><pages>e97106-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24835559</pmid><doi>10.1371/journal.pone.0097106</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-05, Vol.9 (5), p.e97106
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1525342654
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Abiotic stress
Alkalinity
Antacids - pharmacology
Arabidopsis
Biology and Life Sciences
Chlorophyll
Chlorophyll - analysis
Ecotypes
Fluorescence
Gas exchange
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant - drug effects
Gene regulation
Genes
Genomes
Genomics
Gluconeogenesis
Glycolysis
Iron
Iron - analysis
Legumes
Lotus - drug effects
Lotus - metabolism
Lotus japonicus
Medicine and Health Sciences
Oligonucleotide Array Sequence Analysis
Oxidative stress
Physiology
Plant growth
Plant Roots - metabolism
Plant Shoots - metabolism
Plant Transpiration - physiology
Proteins
Real-Time Polymerase Chain Reaction
Research and Analysis Methods
Salinity
Salts
Senescence
Shoots
Signal transduction
Sodium bicarbonate
Sodium Bicarbonate - pharmacology
Species Specificity
Stress response
Stresses
Studies
Transcription factors
Zinc
Zinc - analysis
title Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20to%20long-term%20NaHCO3-derived%20alkalinity%20in%20model%20Lotus%20japonicus%20Ecotypes%20Gifu%20B-129%20and%20Miyakojima%20MG-20:%20transcriptomic%20profiling%20and%20physiological%20characterization&rft.jtitle=PloS%20one&rft.au=Babuin,%20Mar%C3%ADa%20Florencia&rft.date=2014-05-16&rft.volume=9&rft.issue=5&rft.spage=e97106&rft.pages=e97106-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0097106&rft_dat=%3Cproquest_plos_%3E3305984321%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1525342654&rft_id=info:pmid/24835559&rft_doaj_id=oai_doaj_org_article_972c8bcbe9ff4cf6be074f6056fc4b5b&rfr_iscdi=true