Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture

We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-05, Vol.9 (5), p.e93617-e93617
Hauptverfasser: Pravdin, Sergey F, Dierckx, Hans, Katsnelson, Leonid B, Solovyova, Olga, Markhasin, Vladimir S, Panfilov, Alexander V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e93617
container_issue 5
container_start_page e93617
container_title PloS one
container_volume 9
creator Pravdin, Sergey F
Dierckx, Hans
Katsnelson, Leonid B
Solovyova, Olga
Markhasin, Vladimir S
Panfilov, Alexander V
description We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.
doi_str_mv 10.1371/journal.pone.0093617
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1522948461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418634101</galeid><doaj_id>oai_doaj_org_article_41a5b583efdd4d11bc91bf4bd50397ce</doaj_id><sourcerecordid>A418634101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-94c08862a745adb0c636a15d54d1a39df8176d9492bd0fde49bda1752d70de5d3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxazLJfORGKKXqQqHg1204k2R2s2Qn2ySz2kv_uZndadmRXsgEJpw875uck5wse0nwnNCKfFi73ndg51vX6TnGnJakepSdEk7zWZlj-vhofpI9C2GNcUHrsnyaneSsJhXF9Wn259JqGb2RYNEv2Gm09W4LS4jGdch0CIZhgospbCTaOKUtci2KK42sbiPa6W6QW40aCFohNwjA3sa9pdJBerPduyWVBK8MSARerkxMG_deP8-etGCDfjH-z7Ifny6_X3yZXV1_XlycX81kyfM440ziui5zqFgBqsGypCWQQhVMEaBctSmjUnHG80bhVmnGGwWkKnJVYaULRc-y1wffrXVBjNULghR5zlnNSpKIxYFQDtZi680G_K1wYMQ-4PxSgI9DroIRKJqiprpVKh2ANJKTpmWNKjDlldTJ6-O4W99stJJDlcBOTKcrnVmJpdsJhknBMUsG70YD7256HaLYmCC1tdBp1-_PzUhFeMET-uYf9OHsRmoJKQHTtelOQQ6m4pyRuqSM4IGaP0ClT-mNkemptSbFJ4L3E0Fiov4dl9CHIBbfvv4_e_1zyr49YlcabFwFZ_vhKYUpyA6g9C4Er9v7IhMshk65q4YYOkWMnZJkr44v6F501xr0Lz3BEFA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522948461</pqid></control><display><type>article</type><title>Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pravdin, Sergey F ; Dierckx, Hans ; Katsnelson, Leonid B ; Solovyova, Olga ; Markhasin, Vladimir S ; Panfilov, Alexander V</creator><contributor>Talkachova, Alena</contributor><creatorcontrib>Pravdin, Sergey F ; Dierckx, Hans ; Katsnelson, Leonid B ; Solovyova, Olga ; Markhasin, Vladimir S ; Panfilov, Alexander V ; Talkachova, Alena</creatorcontrib><description>We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0093617</identifier><identifier>PMID: 24817308</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Anisotropy ; Astronomy ; Biology and Life Sciences ; Biophysics ; Cardiac arrhythmia ; Cardiology ; Cardiovascular Physiological Phenomena ; Computer and Information Sciences ; Computer Simulation ; Dynamic tests ; Electric Conductivity ; Electrical resistivity ; Endocardium - anatomy &amp; histology ; Endocardium - cytology ; Endocardium - physiology ; Fibrillation ; Geometry ; Heart ; Heart - anatomy &amp; histology ; Heart - physiology ; Heart diseases ; Humans ; Immunology ; Interdisciplinary aspects ; Laboratories ; Mathematical models ; Medicine and Health Sciences ; Models, Cardiovascular ; Molecular biology ; Myocytes, Cardiac - physiology ; Pericardium - anatomy &amp; histology ; Pericardium - cytology ; Pericardium - physiology ; Physical Sciences ; Physics ; Physiology ; Propagation ; Rotation ; Studies ; Ventricle ; Ventricular fibrillation ; Ventricular Fibrillation - pathology ; Ventricular Fibrillation - physiopathology ; Ventricular Function, Left - physiology ; Vortices ; Wave propagation</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e93617-e93617</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Pravdin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Pravdin et al 2014 Pravdin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-94c08862a745adb0c636a15d54d1a39df8176d9492bd0fde49bda1752d70de5d3</citedby><cites>FETCH-LOGICAL-c692t-94c08862a745adb0c636a15d54d1a39df8176d9492bd0fde49bda1752d70de5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015904/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015904/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24817308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Talkachova, Alena</contributor><creatorcontrib>Pravdin, Sergey F</creatorcontrib><creatorcontrib>Dierckx, Hans</creatorcontrib><creatorcontrib>Katsnelson, Leonid B</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Markhasin, Vladimir S</creatorcontrib><creatorcontrib>Panfilov, Alexander V</creatorcontrib><title>Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cardiovascular Physiological Phenomena</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Dynamic tests</subject><subject>Electric Conductivity</subject><subject>Electrical resistivity</subject><subject>Endocardium - anatomy &amp; histology</subject><subject>Endocardium - cytology</subject><subject>Endocardium - physiology</subject><subject>Fibrillation</subject><subject>Geometry</subject><subject>Heart</subject><subject>Heart - anatomy &amp; histology</subject><subject>Heart - physiology</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Immunology</subject><subject>Interdisciplinary aspects</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Cardiovascular</subject><subject>Molecular biology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Pericardium - anatomy &amp; histology</subject><subject>Pericardium - cytology</subject><subject>Pericardium - physiology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiology</subject><subject>Propagation</subject><subject>Rotation</subject><subject>Studies</subject><subject>Ventricle</subject><subject>Ventricular fibrillation</subject><subject>Ventricular Fibrillation - pathology</subject><subject>Ventricular Fibrillation - physiopathology</subject><subject>Ventricular Function, Left - physiology</subject><subject>Vortices</subject><subject>Wave propagation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxazLJfORGKKXqQqHg1204k2R2s2Qn2ySz2kv_uZndadmRXsgEJpw875uck5wse0nwnNCKfFi73ndg51vX6TnGnJakepSdEk7zWZlj-vhofpI9C2GNcUHrsnyaneSsJhXF9Wn259JqGb2RYNEv2Gm09W4LS4jGdch0CIZhgospbCTaOKUtci2KK42sbiPa6W6QW40aCFohNwjA3sa9pdJBerPduyWVBK8MSARerkxMG_deP8-etGCDfjH-z7Ifny6_X3yZXV1_XlycX81kyfM440ziui5zqFgBqsGypCWQQhVMEaBctSmjUnHG80bhVmnGGwWkKnJVYaULRc-y1wffrXVBjNULghR5zlnNSpKIxYFQDtZi680G_K1wYMQ-4PxSgI9DroIRKJqiprpVKh2ANJKTpmWNKjDlldTJ6-O4W99stJJDlcBOTKcrnVmJpdsJhknBMUsG70YD7256HaLYmCC1tdBp1-_PzUhFeMET-uYf9OHsRmoJKQHTtelOQQ6m4pyRuqSM4IGaP0ClT-mNkemptSbFJ4L3E0Fiov4dl9CHIBbfvv4_e_1zyr49YlcabFwFZ_vhKYUpyA6g9C4Er9v7IhMshk65q4YYOkWMnZJkr44v6F501xr0Lz3BEFA</recordid><startdate>20140509</startdate><enddate>20140509</enddate><creator>Pravdin, Sergey F</creator><creator>Dierckx, Hans</creator><creator>Katsnelson, Leonid B</creator><creator>Solovyova, Olga</creator><creator>Markhasin, Vladimir S</creator><creator>Panfilov, Alexander V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140509</creationdate><title>Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture</title><author>Pravdin, Sergey F ; Dierckx, Hans ; Katsnelson, Leonid B ; Solovyova, Olga ; Markhasin, Vladimir S ; Panfilov, Alexander V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-94c08862a745adb0c636a15d54d1a39df8176d9492bd0fde49bda1752d70de5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cardiovascular Physiological Phenomena</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Dynamic tests</topic><topic>Electric Conductivity</topic><topic>Electrical resistivity</topic><topic>Endocardium - anatomy &amp; histology</topic><topic>Endocardium - cytology</topic><topic>Endocardium - physiology</topic><topic>Fibrillation</topic><topic>Geometry</topic><topic>Heart</topic><topic>Heart - anatomy &amp; histology</topic><topic>Heart - physiology</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Immunology</topic><topic>Interdisciplinary aspects</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Cardiovascular</topic><topic>Molecular biology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Pericardium - anatomy &amp; histology</topic><topic>Pericardium - cytology</topic><topic>Pericardium - physiology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiology</topic><topic>Propagation</topic><topic>Rotation</topic><topic>Studies</topic><topic>Ventricle</topic><topic>Ventricular fibrillation</topic><topic>Ventricular Fibrillation - pathology</topic><topic>Ventricular Fibrillation - physiopathology</topic><topic>Ventricular Function, Left - physiology</topic><topic>Vortices</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pravdin, Sergey F</creatorcontrib><creatorcontrib>Dierckx, Hans</creatorcontrib><creatorcontrib>Katsnelson, Leonid B</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Markhasin, Vladimir S</creatorcontrib><creatorcontrib>Panfilov, Alexander V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pravdin, Sergey F</au><au>Dierckx, Hans</au><au>Katsnelson, Leonid B</au><au>Solovyova, Olga</au><au>Markhasin, Vladimir S</au><au>Panfilov, Alexander V</au><au>Talkachova, Alena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-09</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e93617</spage><epage>e93617</epage><pages>e93617-e93617</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24817308</pmid><doi>10.1371/journal.pone.0093617</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-05, Vol.9 (5), p.e93617-e93617
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1522948461
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Anisotropy
Astronomy
Biology and Life Sciences
Biophysics
Cardiac arrhythmia
Cardiology
Cardiovascular Physiological Phenomena
Computer and Information Sciences
Computer Simulation
Dynamic tests
Electric Conductivity
Electrical resistivity
Endocardium - anatomy & histology
Endocardium - cytology
Endocardium - physiology
Fibrillation
Geometry
Heart
Heart - anatomy & histology
Heart - physiology
Heart diseases
Humans
Immunology
Interdisciplinary aspects
Laboratories
Mathematical models
Medicine and Health Sciences
Models, Cardiovascular
Molecular biology
Myocytes, Cardiac - physiology
Pericardium - anatomy & histology
Pericardium - cytology
Pericardium - physiology
Physical Sciences
Physics
Physiology
Propagation
Rotation
Studies
Ventricle
Ventricular fibrillation
Ventricular Fibrillation - pathology
Ventricular Fibrillation - physiopathology
Ventricular Function, Left - physiology
Vortices
Wave propagation
title Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20wave%20propagation%20in%20an%20anisotropic%20model%20of%20the%20left%20ventricle%20based%20on%20analytical%20description%20of%20cardiac%20architecture&rft.jtitle=PloS%20one&rft.au=Pravdin,%20Sergey%20F&rft.date=2014-05-09&rft.volume=9&rft.issue=5&rft.spage=e93617&rft.epage=e93617&rft.pages=e93617-e93617&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0093617&rft_dat=%3Cgale_plos_%3EA418634101%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522948461&rft_id=info:pmid/24817308&rft_galeid=A418634101&rft_doaj_id=oai_doaj_org_article_41a5b583efdd4d11bc91bf4bd50397ce&rfr_iscdi=true