Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors

Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minuti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-05, Vol.9 (5), p.e96807-e96807
Hauptverfasser: Higgins, Brendan T, VanderGheynst, Jean S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e96807
container_issue 5
container_start_page e96807
container_title PloS one
container_volume 9
creator Higgins, Brendan T
VanderGheynst, Jean S
description Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.
doi_str_mv 10.1371/journal.pone.0096807
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1522141171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418708317</galeid><doaj_id>oai_doaj_org_article_1de0a8bd430b4942ba65907d3dddb80b</doaj_id><sourcerecordid>A418708317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-b8103421e4b7f6541811eec5c0bb5841428bd3fa0761d7e154e555dcb9e845f13</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7of-A9GCsOjFjEmTtJ0bYRlGHVhY8Os25ON0miHTzCaprv_edKe7TGUvpBctJ8_7pudNTpa9wmiOSYU_bF3vO2Hne9fBHKFFWaPqSXaKF6SYlQUiT4--T7KzELYIMVKX5fPspKA1YgUjp5lbNQ2oGHLX5KugWvBGtUbkylmTuy7fmVsXvdu3RuUb737HdiCXrXUerBVpveujCcHsRC46ne-9072KJkkTJ41rerCpCqr3wfnwInvWCBvg5fg-z358Wn1ffpldXX9eLy-vZqpidZzJGiNCCwxUVk3JKK4xBlBMISlZTTEtaqlJI1BVYl0BZhQYY1rJBdSUNZicZ28OvnvrAh-zChyzosAU42og1gdCO7Hle5868H-4E4bfFZzfcOGjURY41oBE2pASJOmCFlKUbIEqTbTWskYyeX0cd-vlDrSCLnphJ6bTlc60fON-cYowQWWZDN6NBt7d9BAi35mghoQ7cP3dfxOKKKpIQt_-gz7e3UhtRGrAdE06RaEGU36Z0qxQTXCVqPkjVHo07IxKF6sxqT4RvJ8IEhPhNm5EHwJff_v6_-z1zyl7ccS2IGxsg7P9cJHCFKQHUHkXgofmIWSM-DAX92nwYS74OBdJ9vr4gB5E94NA_gL4ywj7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522141171</pqid></control><display><type>article</type><title>Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Higgins, Brendan T ; VanderGheynst, Jean S</creator><creatorcontrib>Higgins, Brendan T ; VanderGheynst, Jean S</creatorcontrib><description>Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0096807</identifier><identifier>PMID: 24805253</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Agricultural engineering ; Algae ; Analysis ; Bacteria ; Biofouling ; Biofuels ; Biofuels - microbiology ; Biology and Life Sciences ; Biomass ; Biomass energy ; Bioreactors ; Carbon ; Carbon - metabolism ; Chlorella ; Chlorella - genetics ; Chlorella - growth &amp; development ; Chlorella - metabolism ; Chlorella minutissima ; Chlorella pyrenoidosa ; Chlorella sorokiniana ; Chlorella vulgaris ; Coculture Techniques ; Contamination ; Culture Media ; E coli ; Engineering and Technology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Fatty acids ; Food contamination &amp; poisoning ; Fuels ; Glucose ; Glucose - biosynthesis ; Glycerol ; Humans ; Lipids ; Microbiology ; Nitrogen ; Nutrients ; Precursors ; Reactors ; Researchers ; Starch ; Starch - biosynthesis ; Studies ; Substrates ; Water treatment</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e96807-e96807</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Higgins, VanderGheynst. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Higgins, VanderGheynst 2014 Higgins, VanderGheynst</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-b8103421e4b7f6541811eec5c0bb5841428bd3fa0761d7e154e555dcb9e845f13</citedby><cites>FETCH-LOGICAL-c758t-b8103421e4b7f6541811eec5c0bb5841428bd3fa0761d7e154e555dcb9e845f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013066/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013066/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24805253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higgins, Brendan T</creatorcontrib><creatorcontrib>VanderGheynst, Jean S</creatorcontrib><title>Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.</description><subject>Acetic acid</subject><subject>Agricultural engineering</subject><subject>Algae</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biofouling</subject><subject>Biofuels</subject><subject>Biofuels - microbiology</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Bioreactors</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Chlorella</subject><subject>Chlorella - genetics</subject><subject>Chlorella - growth &amp; development</subject><subject>Chlorella - metabolism</subject><subject>Chlorella minutissima</subject><subject>Chlorella pyrenoidosa</subject><subject>Chlorella sorokiniana</subject><subject>Chlorella vulgaris</subject><subject>Coculture Techniques</subject><subject>Contamination</subject><subject>Culture Media</subject><subject>E coli</subject><subject>Engineering and Technology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Fatty acids</subject><subject>Food contamination &amp; poisoning</subject><subject>Fuels</subject><subject>Glucose</subject><subject>Glucose - biosynthesis</subject><subject>Glycerol</subject><subject>Humans</subject><subject>Lipids</subject><subject>Microbiology</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Precursors</subject><subject>Reactors</subject><subject>Researchers</subject><subject>Starch</subject><subject>Starch - biosynthesis</subject><subject>Studies</subject><subject>Substrates</subject><subject>Water treatment</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7of-A9GCsOjFjEmTtJ0bYRlGHVhY8Os25ON0miHTzCaprv_edKe7TGUvpBctJ8_7pudNTpa9wmiOSYU_bF3vO2Hne9fBHKFFWaPqSXaKF6SYlQUiT4--T7KzELYIMVKX5fPspKA1YgUjp5lbNQ2oGHLX5KugWvBGtUbkylmTuy7fmVsXvdu3RuUb737HdiCXrXUerBVpveujCcHsRC46ne-9072KJkkTJ41rerCpCqr3wfnwInvWCBvg5fg-z358Wn1ffpldXX9eLy-vZqpidZzJGiNCCwxUVk3JKK4xBlBMISlZTTEtaqlJI1BVYl0BZhQYY1rJBdSUNZicZ28OvnvrAh-zChyzosAU42og1gdCO7Hle5868H-4E4bfFZzfcOGjURY41oBE2pASJOmCFlKUbIEqTbTWskYyeX0cd-vlDrSCLnphJ6bTlc60fON-cYowQWWZDN6NBt7d9BAi35mghoQ7cP3dfxOKKKpIQt_-gz7e3UhtRGrAdE06RaEGU36Z0qxQTXCVqPkjVHo07IxKF6sxqT4RvJ8IEhPhNm5EHwJff_v6_-z1zyl7ccS2IGxsg7P9cJHCFKQHUHkXgofmIWSM-DAX92nwYS74OBdJ9vr4gB5E94NA_gL4ywj7</recordid><startdate>20140507</startdate><enddate>20140507</enddate><creator>Higgins, Brendan T</creator><creator>VanderGheynst, Jean S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140507</creationdate><title>Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors</title><author>Higgins, Brendan T ; VanderGheynst, Jean S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-b8103421e4b7f6541811eec5c0bb5841428bd3fa0761d7e154e555dcb9e845f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acetic acid</topic><topic>Agricultural engineering</topic><topic>Algae</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biofouling</topic><topic>Biofuels</topic><topic>Biofuels - microbiology</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Bioreactors</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Chlorella</topic><topic>Chlorella - genetics</topic><topic>Chlorella - growth &amp; development</topic><topic>Chlorella - metabolism</topic><topic>Chlorella minutissima</topic><topic>Chlorella pyrenoidosa</topic><topic>Chlorella sorokiniana</topic><topic>Chlorella vulgaris</topic><topic>Coculture Techniques</topic><topic>Contamination</topic><topic>Culture Media</topic><topic>E coli</topic><topic>Engineering and Technology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Fatty acids</topic><topic>Food contamination &amp; poisoning</topic><topic>Fuels</topic><topic>Glucose</topic><topic>Glucose - biosynthesis</topic><topic>Glycerol</topic><topic>Humans</topic><topic>Lipids</topic><topic>Microbiology</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Precursors</topic><topic>Reactors</topic><topic>Researchers</topic><topic>Starch</topic><topic>Starch - biosynthesis</topic><topic>Studies</topic><topic>Substrates</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higgins, Brendan T</creatorcontrib><creatorcontrib>VanderGheynst, Jean S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higgins, Brendan T</au><au>VanderGheynst, Jean S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-07</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e96807</spage><epage>e96807</epage><pages>e96807-e96807</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23-737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24805253</pmid><doi>10.1371/journal.pone.0096807</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-05, Vol.9 (5), p.e96807-e96807
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1522141171
source Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Acetic acid
Agricultural engineering
Algae
Analysis
Bacteria
Biofouling
Biofuels
Biofuels - microbiology
Biology and Life Sciences
Biomass
Biomass energy
Bioreactors
Carbon
Carbon - metabolism
Chlorella
Chlorella - genetics
Chlorella - growth & development
Chlorella - metabolism
Chlorella minutissima
Chlorella pyrenoidosa
Chlorella sorokiniana
Chlorella vulgaris
Coculture Techniques
Contamination
Culture Media
E coli
Engineering and Technology
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Fatty acids
Food contamination & poisoning
Fuels
Glucose
Glucose - biosynthesis
Glycerol
Humans
Lipids
Microbiology
Nitrogen
Nutrients
Precursors
Reactors
Researchers
Starch
Starch - biosynthesis
Studies
Substrates
Water treatment
title Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Escherichia%20coli%20on%20mixotrophic%20growth%20of%20Chlorella%20minutissima%20and%20production%20of%20biofuel%20precursors&rft.jtitle=PloS%20one&rft.au=Higgins,%20Brendan%20T&rft.date=2014-05-07&rft.volume=9&rft.issue=5&rft.spage=e96807&rft.epage=e96807&rft.pages=e96807-e96807&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0096807&rft_dat=%3Cgale_plos_%3EA418708317%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522141171&rft_id=info:pmid/24805253&rft_galeid=A418708317&rft_doaj_id=oai_doaj_org_article_1de0a8bd430b4942ba65907d3dddb80b&rfr_iscdi=true