A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation
The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-05, Vol.9 (5), p.e95774-e95774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e95774 |
---|---|
container_issue | 5 |
container_start_page | e95774 |
container_title | PloS one |
container_volume | 9 |
creator | Mat Zin, Shazalina Abbas, Muhammad Majid, Ahmad Abd Ismail, Ahmad Izani Md |
description | The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature. |
doi_str_mv | 10.1371/journal.pone.0095774 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1520988717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418707736</galeid><doaj_id>oai_doaj_org_article_dfc21951f39640448b31620836b02dff</doaj_id><sourcerecordid>A418707736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c662ebd902b2d41e22831169dfa64f662d9c13d47b31381e0a49efb65d714c1e3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLlNLy8Lw6Lr4MKCt9eQJqedDGnSTVpvn950p7NMZR-kkIac3_mf5J-cJHmO0RLTHL_bucFbYZads7BEqFzlOXuQnOKSkkVGEH14ND9JnoSwQ2hFiyx7nJwQlpcZK-hpsl2nFn6mvdeNs66FOJFp6Iy2kIqu807Ibdq71A4txJAwaXBm6LWzqavTBix4YfQfUKl1dswSPv1kNNjFpfMqUnAziBF_mjyqhQnwbPqfJd8-vP968XFxdX25uVhfLWRWkj6OGYFKlYhURDEMhBQU46xUtchYHYOqlJgqllcU0wIDEqyEuspWKsdMYqBnycu9bmdc4JNJgeMVQWVR5DiPxGZPKCd2vPO6Ff43d0Lz2wXnGy58r6UBrmpJcLnCNY12IcaKWDX6WdCsQkTVddQ6n6oNVQtKgu2jHzPRecTqLW_cD84QRgyzKPBmEvDuZoDQ81YHCcYIC2643TcuMS7QiL76B73_dBPViHgAbWsX68pRlK8ZLnKU5zSL1PIeKn4KWi3ji6p1XJ8lvJ0lRKaHX30jhhD45svn_2evv8_Z10fsFoTpt4cXFuYg24PSuxA81HcmY8THhji4wceG4FNDxLQXxxd0l3ToAPoXI3gGDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520988717</pqid></control><display><type>article</type><title>A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mat Zin, Shazalina ; Abbas, Muhammad ; Majid, Ahmad Abd ; Ismail, Ahmad Izani Md</creator><contributor>Bondarenko, Vladimir E.</contributor><creatorcontrib>Mat Zin, Shazalina ; Abbas, Muhammad ; Majid, Ahmad Abd ; Ismail, Ahmad Izani Md ; Bondarenko, Vladimir E.</creatorcontrib><description>The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0095774</identifier><identifier>PMID: 24796483</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary value problems ; Computational physics ; Computer and Information Sciences ; Dirichlet problem ; Feasibility studies ; Finite volume method ; Fractals ; Models, Theoretical ; Norms ; Partial differential equations ; Physical Sciences ; Problems ; Quantum mechanics</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e95774-e95774</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Mat Zin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Mat Zin et al 2014 Mat Zin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c662ebd902b2d41e22831169dfa64f662d9c13d47b31381e0a49efb65d714c1e3</citedby><cites>FETCH-LOGICAL-c692t-c662ebd902b2d41e22831169dfa64f662d9c13d47b31381e0a49efb65d714c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010414/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010414/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24796483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bondarenko, Vladimir E.</contributor><creatorcontrib>Mat Zin, Shazalina</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Majid, Ahmad Abd</creatorcontrib><creatorcontrib>Ismail, Ahmad Izani Md</creatorcontrib><title>A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computational physics</subject><subject>Computer and Information Sciences</subject><subject>Dirichlet problem</subject><subject>Feasibility studies</subject><subject>Finite volume method</subject><subject>Fractals</subject><subject>Models, Theoretical</subject><subject>Norms</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Problems</subject><subject>Quantum mechanics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLlNLy8Lw6Lr4MKCt9eQJqedDGnSTVpvn950p7NMZR-kkIac3_mf5J-cJHmO0RLTHL_bucFbYZads7BEqFzlOXuQnOKSkkVGEH14ND9JnoSwQ2hFiyx7nJwQlpcZK-hpsl2nFn6mvdeNs66FOJFp6Iy2kIqu807Ibdq71A4txJAwaXBm6LWzqavTBix4YfQfUKl1dswSPv1kNNjFpfMqUnAziBF_mjyqhQnwbPqfJd8-vP968XFxdX25uVhfLWRWkj6OGYFKlYhURDEMhBQU46xUtchYHYOqlJgqllcU0wIDEqyEuspWKsdMYqBnycu9bmdc4JNJgeMVQWVR5DiPxGZPKCd2vPO6Ff43d0Lz2wXnGy58r6UBrmpJcLnCNY12IcaKWDX6WdCsQkTVddQ6n6oNVQtKgu2jHzPRecTqLW_cD84QRgyzKPBmEvDuZoDQ81YHCcYIC2643TcuMS7QiL76B73_dBPViHgAbWsX68pRlK8ZLnKU5zSL1PIeKn4KWi3ji6p1XJ8lvJ0lRKaHX30jhhD45svn_2evv8_Z10fsFoTpt4cXFuYg24PSuxA81HcmY8THhji4wceG4FNDxLQXxxd0l3ToAPoXI3gGDQ</recordid><startdate>20140505</startdate><enddate>20140505</enddate><creator>Mat Zin, Shazalina</creator><creator>Abbas, Muhammad</creator><creator>Majid, Ahmad Abd</creator><creator>Ismail, Ahmad Izani Md</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140505</creationdate><title>A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation</title><author>Mat Zin, Shazalina ; Abbas, Muhammad ; Majid, Ahmad Abd ; Ismail, Ahmad Izani Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c662ebd902b2d41e22831169dfa64f662d9c13d47b31381e0a49efb65d714c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computational physics</topic><topic>Computer and Information Sciences</topic><topic>Dirichlet problem</topic><topic>Feasibility studies</topic><topic>Finite volume method</topic><topic>Fractals</topic><topic>Models, Theoretical</topic><topic>Norms</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Problems</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mat Zin, Shazalina</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Majid, Ahmad Abd</creatorcontrib><creatorcontrib>Ismail, Ahmad Izani Md</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mat Zin, Shazalina</au><au>Abbas, Muhammad</au><au>Majid, Ahmad Abd</au><au>Ismail, Ahmad Izani Md</au><au>Bondarenko, Vladimir E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-05</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e95774</spage><epage>e95774</epage><pages>e95774-e95774</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24796483</pmid><doi>10.1371/journal.pone.0095774</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-05, Vol.9 (5), p.e95774-e95774 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1520988717 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Applied mathematics Boundary conditions Boundary value problems Computational physics Computer and Information Sciences Dirichlet problem Feasibility studies Finite volume method Fractals Models, Theoretical Norms Partial differential equations Physical Sciences Problems Quantum mechanics |
title | A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20trigonometric%20spline%20approach%20to%20numerical%20solution%20of%20generalized%20nonlinear%20Klien-Gordon%20equation&rft.jtitle=PloS%20one&rft.au=Mat%20Zin,%20Shazalina&rft.date=2014-05-05&rft.volume=9&rft.issue=5&rft.spage=e95774&rft.epage=e95774&rft.pages=e95774-e95774&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0095774&rft_dat=%3Cgale_plos_%3EA418707736%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520988717&rft_id=info:pmid/24796483&rft_galeid=A418707736&rft_doaj_id=oai_doaj_org_article_dfc21951f39640448b31620836b02dff&rfr_iscdi=true |