Sources of variability in metabolite measurements from urinary samples
The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability i...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-05, Vol.9 (5), p.e95749 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e95749 |
container_title | PloS one |
container_volume | 9 |
creator | Xiao, Qian Moore, Steven C Boca, Simina M Matthews, Charles E Rothman, Nathaniel Stolzenberg-Solomon, Rachael Z Sinha, Rashmi Cross, Amanda J Sampson, Joshua N |
description | The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the implications for designing epidemiologic studies.
We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected 2-3 samples per person from 17 male subjects (age 38-70) over 2-10 days. We estimated between-individual, within-individual, and technical variability and calculated expected study power with a specific focus on large case-control and nested case-control studies.
Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of "usual" levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the metabolite associations.
The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to detect associations with moderate effect sizes. |
doi_str_mv | 10.1371/journal.pone.0095749 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1520401684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416678022</galeid><doaj_id>oai_doaj_org_article_909594e12c1641f69f31e9729c63387c</doaj_id><sourcerecordid>A416678022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-a6f1aa6efc1894fa5faf8f6db6be618631344dca1db72dddad8b0c78ce9034bb3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbF39B6IDguDFrskkk4-bQilWFwoFq96GM_nYzTIzWZOZYv-9qTstO6AgucjXc96cvLxF8RqjFSYcf9yFMfbQrvahtyuEZM2pfFKcYkmqJasQeXq0PilepLRDqCaCsefFSUW5EJSQ0-LyJstom8rgyluIHhrf-uGu9H3Z2QGakHc2LyGN0Xa2H1LpYujKMfoe4l2ZoNu3Nr0snjlok301zYvi--WnbxdfllfXn9cX51dLzWsxLIE5DMCs01hI6qB24IRjpmGNZVgwggmlRgM2Da-MMWBEgzQX2kpEaNOQRfH2oLtvQ1KTBUnhukIUYZb_tCjWB8IE2Kl99F1uUwXw6s9BiBsFcfC6tUpm0yS1uNKYUeyYdARbySupGSGC66x1Nr02Np01On8_QjsTnd_0fqs24VZRhBiXLAu8mwRi-DnaNPyj5YnaQO7K9y5kMd35pNU5xYxxgaoqU6u_UHkY23mdQ-B8Pp8VfJgVZGawv4YNjCmp9c3X_2evf8zZ90fs1kI7bFNox8GHPs1BegB1DClF6x6dw0jdZ_jBDXWfYTVlOJe9OXb9seghtOQ3JW7tGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520401684</pqid></control><display><type>article</type><title>Sources of variability in metabolite measurements from urinary samples</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xiao, Qian ; Moore, Steven C ; Boca, Simina M ; Matthews, Charles E ; Rothman, Nathaniel ; Stolzenberg-Solomon, Rachael Z ; Sinha, Rashmi ; Cross, Amanda J ; Sampson, Joshua N</creator><contributor>Oresic, Matej</contributor><creatorcontrib>Xiao, Qian ; Moore, Steven C ; Boca, Simina M ; Matthews, Charles E ; Rothman, Nathaniel ; Stolzenberg-Solomon, Rachael Z ; Sinha, Rashmi ; Cross, Amanda J ; Sampson, Joshua N ; Oresic, Matej</creatorcontrib><description>The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the implications for designing epidemiologic studies.
We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected 2-3 samples per person from 17 male subjects (age 38-70) over 2-10 days. We estimated between-individual, within-individual, and technical variability and calculated expected study power with a specific focus on large case-control and nested case-control studies.
Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of "usual" levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the metabolite associations.
The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to detect associations with moderate effect sizes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0095749</identifier><identifier>PMID: 24788433</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoma ; Adenoma - urine ; Adult ; Aged ; Biomarkers ; Body mass ; Body mass index ; Body size ; Cancer ; Case-Control Studies ; Chromatography, Liquid - standards ; Colon ; Colonic Neoplasms - urine ; Disease ; Epidemiology ; Estimates ; Female ; Gas chromatography ; Humans ; Liquid chromatography ; Male ; Mass spectrometry ; Mass Spectrometry - standards ; Mass spectroscopy ; Measurement methods ; Medicine and Health Sciences ; Metabolites ; Metabolomics ; Metabolomics - methods ; Metabolomics - standards ; Middle Aged ; Population ; Quartiles ; Reproducibility of Results ; Researchers ; Risk Factors ; Spectroscopy ; Studies ; Temporal variations ; Tumors ; Urinalysis - methods ; Urinalysis - standards ; Urine ; Variability ; Womens health</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e95749</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-a6f1aa6efc1894fa5faf8f6db6be618631344dca1db72dddad8b0c78ce9034bb3</citedby><cites>FETCH-LOGICAL-c758t-a6f1aa6efc1894fa5faf8f6db6be618631344dca1db72dddad8b0c78ce9034bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24788433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Oresic, Matej</contributor><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>Moore, Steven C</creatorcontrib><creatorcontrib>Boca, Simina M</creatorcontrib><creatorcontrib>Matthews, Charles E</creatorcontrib><creatorcontrib>Rothman, Nathaniel</creatorcontrib><creatorcontrib>Stolzenberg-Solomon, Rachael Z</creatorcontrib><creatorcontrib>Sinha, Rashmi</creatorcontrib><creatorcontrib>Cross, Amanda J</creatorcontrib><creatorcontrib>Sampson, Joshua N</creatorcontrib><title>Sources of variability in metabolite measurements from urinary samples</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the implications for designing epidemiologic studies.
We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected 2-3 samples per person from 17 male subjects (age 38-70) over 2-10 days. We estimated between-individual, within-individual, and technical variability and calculated expected study power with a specific focus on large case-control and nested case-control studies.
Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of "usual" levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the metabolite associations.
The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to detect associations with moderate effect sizes.</description><subject>Adenoma</subject><subject>Adenoma - urine</subject><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cancer</subject><subject>Case-Control Studies</subject><subject>Chromatography, Liquid - standards</subject><subject>Colon</subject><subject>Colonic Neoplasms - urine</subject><subject>Disease</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>Humans</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - standards</subject><subject>Mass spectroscopy</subject><subject>Measurement methods</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Metabolomics - standards</subject><subject>Middle Aged</subject><subject>Population</subject><subject>Quartiles</subject><subject>Reproducibility of Results</subject><subject>Researchers</subject><subject>Risk Factors</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Temporal variations</subject><subject>Tumors</subject><subject>Urinalysis - methods</subject><subject>Urinalysis - standards</subject><subject>Urine</subject><subject>Variability</subject><subject>Womens health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbF39B6IDguDFrskkk4-bQilWFwoFq96GM_nYzTIzWZOZYv-9qTstO6AgucjXc96cvLxF8RqjFSYcf9yFMfbQrvahtyuEZM2pfFKcYkmqJasQeXq0PilepLRDqCaCsefFSUW5EJSQ0-LyJstom8rgyluIHhrf-uGu9H3Z2QGakHc2LyGN0Xa2H1LpYujKMfoe4l2ZoNu3Nr0snjlok301zYvi--WnbxdfllfXn9cX51dLzWsxLIE5DMCs01hI6qB24IRjpmGNZVgwggmlRgM2Da-MMWBEgzQX2kpEaNOQRfH2oLtvQ1KTBUnhukIUYZb_tCjWB8IE2Kl99F1uUwXw6s9BiBsFcfC6tUpm0yS1uNKYUeyYdARbySupGSGC66x1Nr02Np01On8_QjsTnd_0fqs24VZRhBiXLAu8mwRi-DnaNPyj5YnaQO7K9y5kMd35pNU5xYxxgaoqU6u_UHkY23mdQ-B8Pp8VfJgVZGawv4YNjCmp9c3X_2evf8zZ90fs1kI7bFNox8GHPs1BegB1DClF6x6dw0jdZ_jBDXWfYTVlOJe9OXb9seghtOQ3JW7tGw</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Xiao, Qian</creator><creator>Moore, Steven C</creator><creator>Boca, Simina M</creator><creator>Matthews, Charles E</creator><creator>Rothman, Nathaniel</creator><creator>Stolzenberg-Solomon, Rachael Z</creator><creator>Sinha, Rashmi</creator><creator>Cross, Amanda J</creator><creator>Sampson, Joshua N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140501</creationdate><title>Sources of variability in metabolite measurements from urinary samples</title><author>Xiao, Qian ; Moore, Steven C ; Boca, Simina M ; Matthews, Charles E ; Rothman, Nathaniel ; Stolzenberg-Solomon, Rachael Z ; Sinha, Rashmi ; Cross, Amanda J ; Sampson, Joshua N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-a6f1aa6efc1894fa5faf8f6db6be618631344dca1db72dddad8b0c78ce9034bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenoma</topic><topic>Adenoma - urine</topic><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cancer</topic><topic>Case-Control Studies</topic><topic>Chromatography, Liquid - standards</topic><topic>Colon</topic><topic>Colonic Neoplasms - urine</topic><topic>Disease</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>Humans</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - standards</topic><topic>Mass spectroscopy</topic><topic>Measurement methods</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Metabolomics - standards</topic><topic>Middle Aged</topic><topic>Population</topic><topic>Quartiles</topic><topic>Reproducibility of Results</topic><topic>Researchers</topic><topic>Risk Factors</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Temporal variations</topic><topic>Tumors</topic><topic>Urinalysis - methods</topic><topic>Urinalysis - standards</topic><topic>Urine</topic><topic>Variability</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>Moore, Steven C</creatorcontrib><creatorcontrib>Boca, Simina M</creatorcontrib><creatorcontrib>Matthews, Charles E</creatorcontrib><creatorcontrib>Rothman, Nathaniel</creatorcontrib><creatorcontrib>Stolzenberg-Solomon, Rachael Z</creatorcontrib><creatorcontrib>Sinha, Rashmi</creatorcontrib><creatorcontrib>Cross, Amanda J</creatorcontrib><creatorcontrib>Sampson, Joshua N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Qian</au><au>Moore, Steven C</au><au>Boca, Simina M</au><au>Matthews, Charles E</au><au>Rothman, Nathaniel</au><au>Stolzenberg-Solomon, Rachael Z</au><au>Sinha, Rashmi</au><au>Cross, Amanda J</au><au>Sampson, Joshua N</au><au>Oresic, Matej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources of variability in metabolite measurements from urinary samples</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e95749</spage><pages>e95749-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the implications for designing epidemiologic studies.
We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected 2-3 samples per person from 17 male subjects (age 38-70) over 2-10 days. We estimated between-individual, within-individual, and technical variability and calculated expected study power with a specific focus on large case-control and nested case-control studies.
Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of "usual" levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the metabolite associations.
The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to detect associations with moderate effect sizes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24788433</pmid><doi>10.1371/journal.pone.0095749</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-05, Vol.9 (5), p.e95749 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1520401684 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenoma Adenoma - urine Adult Aged Biomarkers Body mass Body mass index Body size Cancer Case-Control Studies Chromatography, Liquid - standards Colon Colonic Neoplasms - urine Disease Epidemiology Estimates Female Gas chromatography Humans Liquid chromatography Male Mass spectrometry Mass Spectrometry - standards Mass spectroscopy Measurement methods Medicine and Health Sciences Metabolites Metabolomics Metabolomics - methods Metabolomics - standards Middle Aged Population Quartiles Reproducibility of Results Researchers Risk Factors Spectroscopy Studies Temporal variations Tumors Urinalysis - methods Urinalysis - standards Urine Variability Womens health |
title | Sources of variability in metabolite measurements from urinary samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20of%20variability%20in%20metabolite%20measurements%20from%20urinary%20samples&rft.jtitle=PloS%20one&rft.au=Xiao,%20Qian&rft.date=2014-05-01&rft.volume=9&rft.issue=5&rft.spage=e95749&rft.pages=e95749-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0095749&rft_dat=%3Cgale_plos_%3EA416678022%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520401684&rft_id=info:pmid/24788433&rft_galeid=A416678022&rft_doaj_id=oai_doaj_org_article_909594e12c1641f69f31e9729c63387c&rfr_iscdi=true |