Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases

Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-04, Vol.9 (4), p.e94871-e94871
Hauptverfasser: Lin, Ning, Yan, Wei, Gao, Kaiming, Wang, Yinyi, Zhang, Junxia, You, Yongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e94871
container_issue 4
container_start_page e94871
container_title PloS one
container_volume 9
creator Lin, Ning
Yan, Wei
Gao, Kaiming
Wang, Yinyi
Zhang, Junxia
You, Yongping
description Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malignant gliomas. A total of 941 gene expression arrays with clinical data were obtained from the Rembrandt, GSE16011 and CGGA datasets. Molecular subtypes were predicted with a prediction analysis of microarray. Among 941 malignant gliomas, 32.73% were Proneural, 15.09% Neural, 19.77% Classical and 32.41% Mesenchymal. The Proneural and Neural subtypes occurred largely in low-grade gliomas, while the Classical and Mesenchymal subtypes were more frequent in high-grade gliomas. A survival analysis showed that the Proneural subtype displayed a good prognosis, Neural had an intermediate correlation with overall survival, Mesenchymal had a worse prognosis than Neural, and Classical had the worst clinical outcome. Furthermore, oligodendrocytomas were preferentially assigned to the Proneural subtype, while the Mesenchymal subtype included a higher percentage of astrocytomas, compared with oligodendrocytomas. Additionally, nearly all classical gliomas harbored EGFR amplifications. Classical anaplastic gliomas have similar clinical outcomes as their glioblastoma counterparts and should be treated more aggressively. Molecular subtypes exist stably in all histological malignant gliomas subtypes. This could be an important improvement to histological diagnoses for both prognosis evaluations and clinical outcome predictions.
doi_str_mv 10.1371/journal.pone.0094871
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1518470579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375584039</galeid><doaj_id>oai_doaj_org_article_3299c75cadc840f0ab73a5382d51f2e1</doaj_id><sourcerecordid>A375584039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-a0ccd3d4b328be3b6d54b69c6fbb159184c47424e5943cfa7c235e2fdb081d7b3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISG42CWO7Ry4QKoqDitVKuJ0a02cSdYrx97aTsU-Ay-Nt7utuqgXKBeJnO__ZzyHLHtO8zllFX23cpO3YOZrZ3Ge5w2vK_ogO6YNK2ZlkbOHd76PsichrPJcsLosH2dHBa-EELw-zv589XgFBq1CArYjymirlVtDXDrjBq2IWoIHFdHrELUKxPUkLpGMzqCaDHgSpjZu1hiItmQEowcLNpLBaDfCewJknEzUM22TPE5Ru5R0CgVmE_S1W8MpURAwPM0e9WACPtu_T7Kfnz7-OPsyO7_4vDg7PZ-pStRxBrlSHet4y4q6RdaWneBt2aiyb1sqGlpzxStecBQNZ6qHShVMYNF3bV7TrmrZSfZy57s2Lsh9HYOkIkmrXFRNIhY7onOwkmuvR_Ab6UDL6wPnBwk-VcOgZEXTpLwUdKrmeZ9DWzFIdS46QfsCafL6sI82tSN2Cm30YA5MD_9YvZSDu5KsaURZFcngzd7Au8sJQ5SjDgqNAYtu2uVd09TNMqGv_kHvv92eGlLjpba9S3HV1lSesjQY6R5sS83vodLT4ZgmxGKv0_mB4O2BIDERf8cBphDk4vu3_2cvfh2yr--wSwQTl8GZ61EKhyDfgcq7EDz2t0WmudzuzE015HZn5H5nkuzF3Qbdim6WhP0FRiYUWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518470579</pqid></control><display><type>article</type><title>Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases</title><source>PLoS</source><source>MEDLINE</source><source>EZB Free E-Journals</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Ning ; Yan, Wei ; Gao, Kaiming ; Wang, Yinyi ; Zhang, Junxia ; You, Yongping</creator><creatorcontrib>Lin, Ning ; Yan, Wei ; Gao, Kaiming ; Wang, Yinyi ; Zhang, Junxia ; You, Yongping</creatorcontrib><description>Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malignant gliomas. A total of 941 gene expression arrays with clinical data were obtained from the Rembrandt, GSE16011 and CGGA datasets. Molecular subtypes were predicted with a prediction analysis of microarray. Among 941 malignant gliomas, 32.73% were Proneural, 15.09% Neural, 19.77% Classical and 32.41% Mesenchymal. The Proneural and Neural subtypes occurred largely in low-grade gliomas, while the Classical and Mesenchymal subtypes were more frequent in high-grade gliomas. A survival analysis showed that the Proneural subtype displayed a good prognosis, Neural had an intermediate correlation with overall survival, Mesenchymal had a worse prognosis than Neural, and Classical had the worst clinical outcome. Furthermore, oligodendrocytomas were preferentially assigned to the Proneural subtype, while the Mesenchymal subtype included a higher percentage of astrocytomas, compared with oligodendrocytomas. Additionally, nearly all classical gliomas harbored EGFR amplifications. Classical anaplastic gliomas have similar clinical outcomes as their glioblastoma counterparts and should be treated more aggressively. Molecular subtypes exist stably in all histological malignant gliomas subtypes. This could be an important improvement to histological diagnoses for both prognosis evaluations and clinical outcome predictions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0094871</identifier><identifier>PMID: 24755548</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Astrocytoma ; Biology and Life Sciences ; Biomarkers, Tumor - metabolism ; Brain cancer ; Brain Neoplasms - classification ; Brain Neoplasms - epidemiology ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Brain tumors ; Care and treatment ; Classification ; Clinical outcomes ; Diagnosis ; DNA microarrays ; Epidermal growth factor receptors ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genomes ; Glioblastoma ; Glioma ; Glioma - classification ; Glioma - epidemiology ; Glioma - genetics ; Glioma - pathology ; Gliomas ; Hospitals ; Humans ; Medical diagnosis ; Medical prognosis ; Medical research ; Medicine and Health Sciences ; Mesenchyme ; Mutation ; Neoplasm Grading ; Neurosurgery ; Predictions ; Prevalence ; Prevalence studies (Epidemiology) ; Prognosis ; Quality ; Receptor, Epidermal Growth Factor - metabolism ; Research and Analysis Methods ; ROC Curve ; Stem cell research ; Studies ; Survival ; Survival Analysis ; World Health Organization</subject><ispartof>PloS one, 2014-04, Vol.9 (4), p.e94871-e94871</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Lin et al 2014 Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-a0ccd3d4b328be3b6d54b69c6fbb159184c47424e5943cfa7c235e2fdb081d7b3</citedby><cites>FETCH-LOGICAL-c758t-a0ccd3d4b328be3b6d54b69c6fbb159184c47424e5943cfa7c235e2fdb081d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995672/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995672/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24755548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Gao, Kaiming</creatorcontrib><creatorcontrib>Wang, Yinyi</creatorcontrib><creatorcontrib>Zhang, Junxia</creatorcontrib><creatorcontrib>You, Yongping</creatorcontrib><title>Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malignant gliomas. A total of 941 gene expression arrays with clinical data were obtained from the Rembrandt, GSE16011 and CGGA datasets. Molecular subtypes were predicted with a prediction analysis of microarray. Among 941 malignant gliomas, 32.73% were Proneural, 15.09% Neural, 19.77% Classical and 32.41% Mesenchymal. The Proneural and Neural subtypes occurred largely in low-grade gliomas, while the Classical and Mesenchymal subtypes were more frequent in high-grade gliomas. A survival analysis showed that the Proneural subtype displayed a good prognosis, Neural had an intermediate correlation with overall survival, Mesenchymal had a worse prognosis than Neural, and Classical had the worst clinical outcome. Furthermore, oligodendrocytomas were preferentially assigned to the Proneural subtype, while the Mesenchymal subtype included a higher percentage of astrocytomas, compared with oligodendrocytomas. Additionally, nearly all classical gliomas harbored EGFR amplifications. Classical anaplastic gliomas have similar clinical outcomes as their glioblastoma counterparts and should be treated more aggressively. Molecular subtypes exist stably in all histological malignant gliomas subtypes. This could be an important improvement to histological diagnoses for both prognosis evaluations and clinical outcome predictions.</description><subject>Analysis</subject><subject>Astrocytoma</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - classification</subject><subject>Brain Neoplasms - epidemiology</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Clinical outcomes</subject><subject>Diagnosis</subject><subject>DNA microarrays</subject><subject>Epidermal growth factor receptors</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genomes</subject><subject>Glioblastoma</subject><subject>Glioma</subject><subject>Glioma - classification</subject><subject>Glioma - epidemiology</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Gliomas</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Medical diagnosis</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchyme</subject><subject>Mutation</subject><subject>Neoplasm Grading</subject><subject>Neurosurgery</subject><subject>Predictions</subject><subject>Prevalence</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Prognosis</subject><subject>Quality</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Research and Analysis Methods</subject><subject>ROC Curve</subject><subject>Stem cell research</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>World Health Organization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISG42CWO7Ry4QKoqDitVKuJ0a02cSdYrx97aTsU-Ay-Nt7utuqgXKBeJnO__ZzyHLHtO8zllFX23cpO3YOZrZ3Ge5w2vK_ogO6YNK2ZlkbOHd76PsichrPJcsLosH2dHBa-EELw-zv589XgFBq1CArYjymirlVtDXDrjBq2IWoIHFdHrELUKxPUkLpGMzqCaDHgSpjZu1hiItmQEowcLNpLBaDfCewJknEzUM22TPE5Ru5R0CgVmE_S1W8MpURAwPM0e9WACPtu_T7Kfnz7-OPsyO7_4vDg7PZ-pStRxBrlSHet4y4q6RdaWneBt2aiyb1sqGlpzxStecBQNZ6qHShVMYNF3bV7TrmrZSfZy57s2Lsh9HYOkIkmrXFRNIhY7onOwkmuvR_Ab6UDL6wPnBwk-VcOgZEXTpLwUdKrmeZ9DWzFIdS46QfsCafL6sI82tSN2Cm30YA5MD_9YvZSDu5KsaURZFcngzd7Au8sJQ5SjDgqNAYtu2uVd09TNMqGv_kHvv92eGlLjpba9S3HV1lSesjQY6R5sS83vodLT4ZgmxGKv0_mB4O2BIDERf8cBphDk4vu3_2cvfh2yr--wSwQTl8GZ61EKhyDfgcq7EDz2t0WmudzuzE015HZn5H5nkuzF3Qbdim6WhP0FRiYUWA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lin, Ning</creator><creator>Yan, Wei</creator><creator>Gao, Kaiming</creator><creator>Wang, Yinyi</creator><creator>Zhang, Junxia</creator><creator>You, Yongping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140401</creationdate><title>Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases</title><author>Lin, Ning ; Yan, Wei ; Gao, Kaiming ; Wang, Yinyi ; Zhang, Junxia ; You, Yongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-a0ccd3d4b328be3b6d54b69c6fbb159184c47424e5943cfa7c235e2fdb081d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Astrocytoma</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - classification</topic><topic>Brain Neoplasms - epidemiology</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Clinical outcomes</topic><topic>Diagnosis</topic><topic>DNA microarrays</topic><topic>Epidermal growth factor receptors</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genomes</topic><topic>Glioblastoma</topic><topic>Glioma</topic><topic>Glioma - classification</topic><topic>Glioma - epidemiology</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Gliomas</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Medical diagnosis</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchyme</topic><topic>Mutation</topic><topic>Neoplasm Grading</topic><topic>Neurosurgery</topic><topic>Predictions</topic><topic>Prevalence</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Prognosis</topic><topic>Quality</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Research and Analysis Methods</topic><topic>ROC Curve</topic><topic>Stem cell research</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>World Health Organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Gao, Kaiming</creatorcontrib><creatorcontrib>Wang, Yinyi</creatorcontrib><creatorcontrib>Zhang, Junxia</creatorcontrib><creatorcontrib>You, Yongping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ning</au><au>Yan, Wei</au><au>Gao, Kaiming</au><au>Wang, Yinyi</au><au>Zhang, Junxia</au><au>You, Yongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>9</volume><issue>4</issue><spage>e94871</spage><epage>e94871</epage><pages>e94871-e94871</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malignant gliomas. A total of 941 gene expression arrays with clinical data were obtained from the Rembrandt, GSE16011 and CGGA datasets. Molecular subtypes were predicted with a prediction analysis of microarray. Among 941 malignant gliomas, 32.73% were Proneural, 15.09% Neural, 19.77% Classical and 32.41% Mesenchymal. The Proneural and Neural subtypes occurred largely in low-grade gliomas, while the Classical and Mesenchymal subtypes were more frequent in high-grade gliomas. A survival analysis showed that the Proneural subtype displayed a good prognosis, Neural had an intermediate correlation with overall survival, Mesenchymal had a worse prognosis than Neural, and Classical had the worst clinical outcome. Furthermore, oligodendrocytomas were preferentially assigned to the Proneural subtype, while the Mesenchymal subtype included a higher percentage of astrocytomas, compared with oligodendrocytomas. Additionally, nearly all classical gliomas harbored EGFR amplifications. Classical anaplastic gliomas have similar clinical outcomes as their glioblastoma counterparts and should be treated more aggressively. Molecular subtypes exist stably in all histological malignant gliomas subtypes. This could be an important improvement to histological diagnoses for both prognosis evaluations and clinical outcome predictions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24755548</pmid><doi>10.1371/journal.pone.0094871</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-04, Vol.9 (4), p.e94871-e94871
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1518470579
source PLoS; MEDLINE; EZB Free E-Journals; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry
subjects Analysis
Astrocytoma
Biology and Life Sciences
Biomarkers, Tumor - metabolism
Brain cancer
Brain Neoplasms - classification
Brain Neoplasms - epidemiology
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Brain tumors
Care and treatment
Classification
Clinical outcomes
Diagnosis
DNA microarrays
Epidermal growth factor receptors
Gene expression
Gene Expression Regulation, Neoplastic
Genomes
Glioblastoma
Glioma
Glioma - classification
Glioma - epidemiology
Glioma - genetics
Glioma - pathology
Gliomas
Hospitals
Humans
Medical diagnosis
Medical prognosis
Medical research
Medicine and Health Sciences
Mesenchyme
Mutation
Neoplasm Grading
Neurosurgery
Predictions
Prevalence
Prevalence studies (Epidemiology)
Prognosis
Quality
Receptor, Epidermal Growth Factor - metabolism
Research and Analysis Methods
ROC Curve
Stem cell research
Studies
Survival
Survival Analysis
World Health Organization
title Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20and%20clinicopathologic%20characteristics%20of%20the%20molecular%20subtypes%20in%20malignant%20glioma:%20a%20multi-institutional%20analysis%20of%20941%20cases&rft.jtitle=PloS%20one&rft.au=Lin,%20Ning&rft.date=2014-04-01&rft.volume=9&rft.issue=4&rft.spage=e94871&rft.epage=e94871&rft.pages=e94871-e94871&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0094871&rft_dat=%3Cgale_plos_%3EA375584039%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518470579&rft_id=info:pmid/24755548&rft_galeid=A375584039&rft_doaj_id=oai_doaj_org_article_3299c75cadc840f0ab73a5382d51f2e1&rfr_iscdi=true