Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles
Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we as...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-04, Vol.9 (4), p.e95983-e95983 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e95983 |
---|---|
container_issue | 4 |
container_start_page | e95983 |
container_title | PloS one |
container_volume | 9 |
creator | Munster, Michal Fremder, Ella Miller, Valeria Ben-Tsedek, Neta Davidi, Shiri Scherer, Stefan J Shaked, Yuval |
description | Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis. |
doi_str_mv | 10.1371/journal.pone.0095983 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1518097138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375585203</galeid><doaj_id>oai_doaj_org_article_9aa513b95afd4f50832587cc0151743d</doaj_id><sourcerecordid>A375585203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dda1a727a831c376fc04983271c08be358bce2e2385a04c6aca9e5c3ea748e843</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1padK0_6C0hkJpD95KlmXJl8ISknQhJdCPXMWsPPZq8VpbSQ7Nv48264R1yaHoIKF55tVo5k2St5TMKBP0y9oOrodutrU9zgipeCXZs-SYVizPypyw5wfno-SV92tCOJNl-TI5ygvBc8bYcfJ93geTXZ9dnGfzFJoGdfBpWGEKfWtsi73R6dbZLbpg0Ke2ScOwsS6r0ZkbrNON0TEKMao79K-TFw10Ht-M-0ny-_zs1-m37PLqYnE6v8x0WeUhq2ugIHIBklHNRNloUsTqc0E1kUtkXC415pgzyYEUugQNFXLNEEQhURbsJHm_19121quxE15RTiWpBGUyEos9UVtYq60zG3C3yoJR9xfWtWosWlUAnLJlxaGpi4aTWAiXQmsS5UTB6qj1dXxtWG6w1tgHB91EdBrpzUq19kaxqioopVHg0yjg7J8BfVAb4zV2HfRoh33dcUz5PfrhH_Tp341UC_EDpm9sfFfvRNWcCc4lj0OP1OwJKq4a49iibRoT7ycJnycJkQn4N7QweK8WP3_8P3t1PWU_HrArhC6svO2GYGzvp2CxB6OpvHfYPDaZErVz_UM31M71anR9THt3OKDHpAebszvRLvtT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518097138</pqid></control><display><type>article</type><title>Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Munster, Michal ; Fremder, Ella ; Miller, Valeria ; Ben-Tsedek, Neta ; Davidi, Shiri ; Scherer, Stefan J ; Shaked, Yuval</creator><contributor>Bertolini, Francesco</contributor><creatorcontrib>Munster, Michal ; Fremder, Ella ; Miller, Valeria ; Ben-Tsedek, Neta ; Davidi, Shiri ; Scherer, Stefan J ; Shaked, Yuval ; Bertolini, Francesco</creatorcontrib><description>Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0095983</identifier><identifier>PMID: 24752333</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Angiogenesis ; Angiogenesis Inhibitors - therapeutic use ; Animals ; Antiangiogenics ; Antibodies, Monoclonal, Humanized - therapeutic use ; Antineoplastic Agents - therapeutic use ; Bevacizumab ; Biology and Life Sciences ; Blood platelets ; Bone marrow ; Boyden chamber ; Breast cancer ; Breast carcinoma ; Cancer cells ; Cancer therapies ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell-Derived Microparticles ; Chemotherapy ; Colonization ; Drugs ; Exposure ; Flow cytometry ; Homing ; Human Umbilical Vein Endothelial Cells - cytology ; Humans ; Medicine ; Medicine and Health Sciences ; Mice ; Microparticles ; Neovascularization, Pathologic - drug therapy ; Neutralization ; Pharmacology ; Tumor cells ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>PloS one, 2014-04, Vol.9 (4), p.e95983-e95983</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Munster et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Munster et al 2014 Munster et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dda1a727a831c376fc04983271c08be358bce2e2385a04c6aca9e5c3ea748e843</citedby><cites>FETCH-LOGICAL-c692t-dda1a727a831c376fc04983271c08be358bce2e2385a04c6aca9e5c3ea748e843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994111/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994111/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24752333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bertolini, Francesco</contributor><creatorcontrib>Munster, Michal</creatorcontrib><creatorcontrib>Fremder, Ella</creatorcontrib><creatorcontrib>Miller, Valeria</creatorcontrib><creatorcontrib>Ben-Tsedek, Neta</creatorcontrib><creatorcontrib>Davidi, Shiri</creatorcontrib><creatorcontrib>Scherer, Stefan J</creatorcontrib><creatorcontrib>Shaked, Yuval</creatorcontrib><title>Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.</description><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Animals</subject><subject>Antiangiogenics</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Bevacizumab</subject><subject>Biology and Life Sciences</subject><subject>Blood platelets</subject><subject>Bone marrow</subject><subject>Boyden chamber</subject><subject>Breast cancer</subject><subject>Breast carcinoma</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell-Derived Microparticles</subject><subject>Chemotherapy</subject><subject>Colonization</subject><subject>Drugs</subject><subject>Exposure</subject><subject>Flow cytometry</subject><subject>Homing</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Microparticles</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neutralization</subject><subject>Pharmacology</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1r3DAQhk1padK0_6C0hkJpD95KlmXJl8ISknQhJdCPXMWsPPZq8VpbSQ7Nv48264R1yaHoIKF55tVo5k2St5TMKBP0y9oOrodutrU9zgipeCXZs-SYVizPypyw5wfno-SV92tCOJNl-TI5ygvBc8bYcfJ93geTXZ9dnGfzFJoGdfBpWGEKfWtsi73R6dbZLbpg0Ke2ScOwsS6r0ZkbrNON0TEKMao79K-TFw10Ht-M-0ny-_zs1-m37PLqYnE6v8x0WeUhq2ugIHIBklHNRNloUsTqc0E1kUtkXC415pgzyYEUugQNFXLNEEQhURbsJHm_19121quxE15RTiWpBGUyEos9UVtYq60zG3C3yoJR9xfWtWosWlUAnLJlxaGpi4aTWAiXQmsS5UTB6qj1dXxtWG6w1tgHB91EdBrpzUq19kaxqioopVHg0yjg7J8BfVAb4zV2HfRoh33dcUz5PfrhH_Tp341UC_EDpm9sfFfvRNWcCc4lj0OP1OwJKq4a49iibRoT7ycJnycJkQn4N7QweK8WP3_8P3t1PWU_HrArhC6svO2GYGzvp2CxB6OpvHfYPDaZErVz_UM31M71anR9THt3OKDHpAebszvRLvtT</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Munster, Michal</creator><creator>Fremder, Ella</creator><creator>Miller, Valeria</creator><creator>Ben-Tsedek, Neta</creator><creator>Davidi, Shiri</creator><creator>Scherer, Stefan J</creator><creator>Shaked, Yuval</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140401</creationdate><title>Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles</title><author>Munster, Michal ; Fremder, Ella ; Miller, Valeria ; Ben-Tsedek, Neta ; Davidi, Shiri ; Scherer, Stefan J ; Shaked, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dda1a727a831c376fc04983271c08be358bce2e2385a04c6aca9e5c3ea748e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Animals</topic><topic>Antiangiogenics</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Bevacizumab</topic><topic>Biology and Life Sciences</topic><topic>Blood platelets</topic><topic>Bone marrow</topic><topic>Boyden chamber</topic><topic>Breast cancer</topic><topic>Breast carcinoma</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell-Derived Microparticles</topic><topic>Chemotherapy</topic><topic>Colonization</topic><topic>Drugs</topic><topic>Exposure</topic><topic>Flow cytometry</topic><topic>Homing</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Microparticles</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neutralization</topic><topic>Pharmacology</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munster, Michal</creatorcontrib><creatorcontrib>Fremder, Ella</creatorcontrib><creatorcontrib>Miller, Valeria</creatorcontrib><creatorcontrib>Ben-Tsedek, Neta</creatorcontrib><creatorcontrib>Davidi, Shiri</creatorcontrib><creatorcontrib>Scherer, Stefan J</creatorcontrib><creatorcontrib>Shaked, Yuval</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munster, Michal</au><au>Fremder, Ella</au><au>Miller, Valeria</au><au>Ben-Tsedek, Neta</au><au>Davidi, Shiri</au><au>Scherer, Stefan J</au><au>Shaked, Yuval</au><au>Bertolini, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>9</volume><issue>4</issue><spage>e95983</spage><epage>e95983</epage><pages>e95983-e95983</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24752333</pmid><doi>10.1371/journal.pone.0095983</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-04, Vol.9 (4), p.e95983-e95983 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1518097138 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Angiogenesis Angiogenesis Inhibitors - therapeutic use Animals Antiangiogenics Antibodies, Monoclonal, Humanized - therapeutic use Antineoplastic Agents - therapeutic use Bevacizumab Biology and Life Sciences Blood platelets Bone marrow Boyden chamber Breast cancer Breast carcinoma Cancer cells Cancer therapies Cell Line, Tumor Cell Movement - drug effects Cell-Derived Microparticles Chemotherapy Colonization Drugs Exposure Flow cytometry Homing Human Umbilical Vein Endothelial Cells - cytology Humans Medicine Medicine and Health Sciences Mice Microparticles Neovascularization, Pathologic - drug therapy Neutralization Pharmacology Tumor cells Tumors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism |
title | Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-VEGF-A%20affects%20the%20angiogenic%20properties%20of%20tumor-derived%20microparticles&rft.jtitle=PloS%20one&rft.au=Munster,%20Michal&rft.date=2014-04-01&rft.volume=9&rft.issue=4&rft.spage=e95983&rft.epage=e95983&rft.pages=e95983-e95983&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0095983&rft_dat=%3Cgale_plos_%3EA375585203%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518097138&rft_id=info:pmid/24752333&rft_galeid=A375585203&rft_doaj_id=oai_doaj_org_article_9aa513b95afd4f50832587cc0151743d&rfr_iscdi=true |