Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme
Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-04, Vol.9 (4), p.e94659-e94659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e94659 |
---|---|
container_issue | 4 |
container_start_page | e94659 |
container_title | PloS one |
container_volume | 9 |
creator | Chien, Chin-I Chen, Yu-Wei Wu, Yi-Hua Chang, Chih-Yao Wang, Tzu-Ling Wang, Chien-Chia |
description | Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships. |
doi_str_mv | 10.1371/journal.pone.0094659 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1517440776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375583825</galeid><doaj_id>oai_doaj_org_article_c3141a0834734ec38349488c1bb35c64</doaj_id><sourcerecordid>A375583825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5a5a3fba33542454993e86c6283d7ecda670a6471e8ece382efba0803b76b9003</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWO7Ti5IK0qCitVVCofV8txJlkv3nhrO6Xh1-PtptUG9YBysDN-3ncyE0-SvMRojgnHH9a2d500863tYI5QSXNWPkqOcUmyWZ4h8vhgf5Q8836NECNFnj9NjjLKKcGMHic3Z32ngrbRKfV95YMO_e41tU0qU-h_STfYoFXamkENZhYuvy5SP3RhBUF6SH_rsEpll8K1NbdC6bQZ0r5zYGSAOq2kCuB0tFe27WIohe7PsIHnyZNGGg8vxvUk-XH26fvpl9n5xefl6eJ8pvIyCzMmmSRNJQlhNKOMliWBIld5VpCag6plzpHMKcdQgAJSZBBhVCBS8bwqESInyeu979ZYL8ameYEZ5pQizvNILPdEbeVabJ3exJqFlVrcBqxrhXSxBQaEIpjiaE8oJxQUiZuSFoXCVUWYymn0-jhm66sN1Aq64KSZmE5POr0Srb0WpCwRYywavBsNnL3qwQex0V6BMbID2--_u-Cc4yKib_5BH65upFoZC9BdY2NetTMVC8IZK2LPdmnnD1DxqWGjVbxhjY7xieD9RBCZADehlb33Yvnt8v_Zi59T9u0BuwJpwsqPV8tPQboHlbPeO2jum4yR2A3IXTfEbkDEOCBR9urwB92L7iaC_AUnhgyo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517440776</pqid></control><display><type>article</type><title>Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chien, Chin-I ; Chen, Yu-Wei ; Wu, Yi-Hua ; Chang, Chih-Yao ; Wang, Tzu-Ling ; Wang, Chien-Chia</creator><contributor>Vertessy, Beata G.</contributor><creatorcontrib>Chien, Chin-I ; Chen, Yu-Wei ; Wu, Yi-Hua ; Chang, Chih-Yao ; Wang, Tzu-Ling ; Wang, Chien-Chia ; Vertessy, Beata G.</creatorcontrib><description>Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0094659</identifier><identifier>PMID: 24743154</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Aminoacylation ; Animals ; Arabidopsis thaliana ; Bacteria ; Bacteria - enzymology ; Baking yeast ; Base Sequence ; Biology and Life Sciences ; Chloroplasts ; Cloning, Molecular ; Compartments ; Cytoplasm ; Defects ; E coli ; Enzymes ; Escherichia coli ; Eukaryota - enzymology ; Evolution, Molecular ; Gene Knockout Techniques ; Genes ; Genetic aspects ; Glycine-tRNA ligase ; Glycine-tRNA Ligase - chemistry ; Glycine-tRNA Ligase - deficiency ; Glycine-tRNA Ligase - genetics ; Glycine-tRNA Ligase - metabolism ; Humans ; Isoacceptors ; Life sciences ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Molecular evolution ; Physiological aspects ; Plant mitochondria ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Transport ; Proteins ; RNA polymerases ; Saccharomyces cerevisiae ; Transfer RNA ; tRNA ; Yeast</subject><ispartof>PloS one, 2014-04, Vol.9 (4), p.e94659-e94659</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Chien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Chien et al 2014 Chien et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5a5a3fba33542454993e86c6283d7ecda670a6471e8ece382efba0803b76b9003</citedby><cites>FETCH-LOGICAL-c692t-5a5a3fba33542454993e86c6283d7ecda670a6471e8ece382efba0803b76b9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24743154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vertessy, Beata G.</contributor><creatorcontrib>Chien, Chin-I</creatorcontrib><creatorcontrib>Chen, Yu-Wei</creatorcontrib><creatorcontrib>Wu, Yi-Hua</creatorcontrib><creatorcontrib>Chang, Chih-Yao</creatorcontrib><creatorcontrib>Wang, Tzu-Ling</creatorcontrib><creatorcontrib>Wang, Chien-Chia</creatorcontrib><title>Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.</description><subject>Amino acids</subject><subject>Aminoacylation</subject><subject>Animals</subject><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>Bacteria - enzymology</subject><subject>Baking yeast</subject><subject>Base Sequence</subject><subject>Biology and Life Sciences</subject><subject>Chloroplasts</subject><subject>Cloning, Molecular</subject><subject>Compartments</subject><subject>Cytoplasm</subject><subject>Defects</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Eukaryota - enzymology</subject><subject>Evolution, Molecular</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glycine-tRNA ligase</subject><subject>Glycine-tRNA Ligase - chemistry</subject><subject>Glycine-tRNA Ligase - deficiency</subject><subject>Glycine-tRNA Ligase - genetics</subject><subject>Glycine-tRNA Ligase - metabolism</subject><subject>Humans</subject><subject>Isoacceptors</subject><subject>Life sciences</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Molecular evolution</subject><subject>Physiological aspects</subject><subject>Plant mitochondria</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>RNA polymerases</subject><subject>Saccharomyces cerevisiae</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWO7Ti5IK0qCitVVCofV8txJlkv3nhrO6Xh1-PtptUG9YBysDN-3ncyE0-SvMRojgnHH9a2d500863tYI5QSXNWPkqOcUmyWZ4h8vhgf5Q8836NECNFnj9NjjLKKcGMHic3Z32ngrbRKfV95YMO_e41tU0qU-h_STfYoFXamkENZhYuvy5SP3RhBUF6SH_rsEpll8K1NbdC6bQZ0r5zYGSAOq2kCuB0tFe27WIohe7PsIHnyZNGGg8vxvUk-XH26fvpl9n5xefl6eJ8pvIyCzMmmSRNJQlhNKOMliWBIld5VpCag6plzpHMKcdQgAJSZBBhVCBS8bwqESInyeu979ZYL8ameYEZ5pQizvNILPdEbeVabJ3exJqFlVrcBqxrhXSxBQaEIpjiaE8oJxQUiZuSFoXCVUWYymn0-jhm66sN1Aq64KSZmE5POr0Srb0WpCwRYywavBsNnL3qwQex0V6BMbID2--_u-Cc4yKib_5BH65upFoZC9BdY2NetTMVC8IZK2LPdmnnD1DxqWGjVbxhjY7xieD9RBCZADehlb33Yvnt8v_Zi59T9u0BuwJpwsqPV8tPQboHlbPeO2jum4yR2A3IXTfEbkDEOCBR9urwB92L7iaC_AUnhgyo</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Chien, Chin-I</creator><creator>Chen, Yu-Wei</creator><creator>Wu, Yi-Hua</creator><creator>Chang, Chih-Yao</creator><creator>Wang, Tzu-Ling</creator><creator>Wang, Chien-Chia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140401</creationdate><title>Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme</title><author>Chien, Chin-I ; Chen, Yu-Wei ; Wu, Yi-Hua ; Chang, Chih-Yao ; Wang, Tzu-Ling ; Wang, Chien-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5a5a3fba33542454993e86c6283d7ecda670a6471e8ece382efba0803b76b9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Aminoacylation</topic><topic>Animals</topic><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>Bacteria - enzymology</topic><topic>Baking yeast</topic><topic>Base Sequence</topic><topic>Biology and Life Sciences</topic><topic>Chloroplasts</topic><topic>Cloning, Molecular</topic><topic>Compartments</topic><topic>Cytoplasm</topic><topic>Defects</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Eukaryota - enzymology</topic><topic>Evolution, Molecular</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glycine-tRNA ligase</topic><topic>Glycine-tRNA Ligase - chemistry</topic><topic>Glycine-tRNA Ligase - deficiency</topic><topic>Glycine-tRNA Ligase - genetics</topic><topic>Glycine-tRNA Ligase - metabolism</topic><topic>Humans</topic><topic>Isoacceptors</topic><topic>Life sciences</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Molecular evolution</topic><topic>Physiological aspects</topic><topic>Plant mitochondria</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>RNA polymerases</topic><topic>Saccharomyces cerevisiae</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chien, Chin-I</creatorcontrib><creatorcontrib>Chen, Yu-Wei</creatorcontrib><creatorcontrib>Wu, Yi-Hua</creatorcontrib><creatorcontrib>Chang, Chih-Yao</creatorcontrib><creatorcontrib>Wang, Tzu-Ling</creatorcontrib><creatorcontrib>Wang, Chien-Chia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chien, Chin-I</au><au>Chen, Yu-Wei</au><au>Wu, Yi-Hua</au><au>Chang, Chih-Yao</au><au>Wang, Tzu-Ling</au><au>Wang, Chien-Chia</au><au>Vertessy, Beata G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>9</volume><issue>4</issue><spage>e94659</spage><epage>e94659</epage><pages>e94659-e94659</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24743154</pmid><doi>10.1371/journal.pone.0094659</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-04, Vol.9 (4), p.e94659-e94659 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1517440776 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Aminoacylation Animals Arabidopsis thaliana Bacteria Bacteria - enzymology Baking yeast Base Sequence Biology and Life Sciences Chloroplasts Cloning, Molecular Compartments Cytoplasm Defects E coli Enzymes Escherichia coli Eukaryota - enzymology Evolution, Molecular Gene Knockout Techniques Genes Genetic aspects Glycine-tRNA ligase Glycine-tRNA Ligase - chemistry Glycine-tRNA Ligase - deficiency Glycine-tRNA Ligase - genetics Glycine-tRNA Ligase - metabolism Humans Isoacceptors Life sciences Mitochondria Mitochondria - genetics Mitochondria - metabolism Molecular evolution Physiological aspects Plant mitochondria Protein Multimerization Protein Structure, Quaternary Protein Transport Proteins RNA polymerases Saccharomyces cerevisiae Transfer RNA tRNA Yeast |
title | Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20substitution%20of%20a%20eukaryotic%20glycyl-tRNA%20synthetase%20with%20an%20evolutionarily%20unrelated%20bacterial%20cognate%20enzyme&rft.jtitle=PloS%20one&rft.au=Chien,%20Chin-I&rft.date=2014-04-01&rft.volume=9&rft.issue=4&rft.spage=e94659&rft.epage=e94659&rft.pages=e94659-e94659&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0094659&rft_dat=%3Cgale_plos_%3EA375583825%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517440776&rft_id=info:pmid/24743154&rft_galeid=A375583825&rft_doaj_id=oai_doaj_org_article_c3141a0834734ec38349488c1bb35c64&rfr_iscdi=true |