Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex
Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found t...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-04, Vol.9 (4), p.e94255-e94255 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e94255 |
---|---|
container_issue | 4 |
container_start_page | e94255 |
container_title | PloS one |
container_volume | 9 |
creator | Tucholski, Janusz Pinner, Anita L Simmons, Micah S Meador-Woodruff, James H |
description | Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species. |
doi_str_mv | 10.1371/journal.pone.0094255 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1513827719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375583470</galeid><doaj_id>oai_doaj_org_article_e877a02b15f24fff950a05351b17ec2c</doaj_id><sourcerecordid>A375583470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-43c6445785e31c2c4aba5a937ccd0d0009260d4e5100dcd9b166f5c8b4613e163</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLts_2BshsHYLpJJlmTZN4NQui3Q0rGvW3Esy4mCImWSHJZ_P6VxSzx6MQy2kJ_3PTrn6GTZS4xmmHD8Ye16b8HMts6qGUI1LRh7lJ3jmhTTskDk8cn6LHsWwhohRqqyfJqdFZRjUnFynsnLnTN91M6C12afS2eD8jvV5luIUXmbuy6fX3-d515JtY3O56FveqtjvjR76cLewEGda5tfw2YDRoPNO-9sBJPcfFR_nmdPOjBBvRi-k-znp8sfF1-mVzefFxfzq6nkrIpTSmRJKeMVUwTLQlJogEFNuJQtalFKsShRSxXDCLWyrRtclh2TVUNLTBQuySR7ffTdGhfEUJ8gMEu5FpynakyyxZFoHazF1usN-L1woMXthvNLAT5qaZRQFeeAigazrqBd19UMQaofww3mKp0ueX0covXNRrVS2ejBjEzHf6xeiaXbCVLzumIoGbwbDLz73asQxUYHqYwBq1x_e25KSYHSa5K9-Qd9OLuBWkJKQNvOpbjyYCrmhDNWEcoPYWcPUOlp1Uan9qtOp_2R4P1IkJjU1LiEPgSx-P7t_9mbX2P27Qm7UmDiKgyXMYxBegSldyF41d0XGSNxmIW7aojDLIhhFpLs1WmD7kV3l5_8BQtzBJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513827719</pqid></control><display><type>article</type><title>Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tucholski, Janusz ; Pinner, Anita L ; Simmons, Micah S ; Meador-Woodruff, James H</creator><contributor>Surolia, Avadhesha</contributor><creatorcontrib>Tucholski, Janusz ; Pinner, Anita L ; Simmons, Micah S ; Meador-Woodruff, James H ; Surolia, Avadhesha</creatorcontrib><description>Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0094255</identifier><identifier>PMID: 24713873</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AMPA receptors ; Animal models ; Animals ; Binding ; Biological Evolution ; Biology and Life Sciences ; Biosynthesis ; Brain ; Cortex (frontal) ; Cues ; Deglycosylation ; Endoplasmic reticulum ; Evolution ; Frontal Lobe - metabolism ; Frontal lobes ; Genetic aspects ; Glutamatergic transmission ; Glutamic acid receptors ; Glycoproteins ; Glycosylation ; Homology ; Humans ; Immunoglobulins ; Lectins ; Lectins - metabolism ; Ligands ; Macaca nemestrina ; Mammals ; Mannose ; Morphogenesis ; N-Acetylglucosamine ; Neurobiology ; Neurons ; Neurosciences ; Neurotransmission ; Physiological aspects ; Polysaccharides - chemistry ; Protein Binding ; Protein Subunits - metabolism ; Protein transport ; Proteins ; Psychiatry ; Rats ; Receptors, AMPA - chemistry ; Receptors, AMPA - metabolism ; Research and Analysis Methods ; Rodents ; Schizophrenia ; Species Specificity ; Studies ; Synaptic transmission ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>PloS one, 2014-04, Vol.9 (4), p.e94255-e94255</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Tucholski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Tucholski et al 2014 Tucholski et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-43c6445785e31c2c4aba5a937ccd0d0009260d4e5100dcd9b166f5c8b4613e163</citedby><cites>FETCH-LOGICAL-c758t-43c6445785e31c2c4aba5a937ccd0d0009260d4e5100dcd9b166f5c8b4613e163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979850/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979850/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24713873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Surolia, Avadhesha</contributor><creatorcontrib>Tucholski, Janusz</creatorcontrib><creatorcontrib>Pinner, Anita L</creatorcontrib><creatorcontrib>Simmons, Micah S</creatorcontrib><creatorcontrib>Meador-Woodruff, James H</creatorcontrib><title>Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species.</description><subject>AMPA receptors</subject><subject>Animal models</subject><subject>Animals</subject><subject>Binding</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Brain</subject><subject>Cortex (frontal)</subject><subject>Cues</subject><subject>Deglycosylation</subject><subject>Endoplasmic reticulum</subject><subject>Evolution</subject><subject>Frontal Lobe - metabolism</subject><subject>Frontal lobes</subject><subject>Genetic aspects</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Lectins</subject><subject>Lectins - metabolism</subject><subject>Ligands</subject><subject>Macaca nemestrina</subject><subject>Mammals</subject><subject>Mannose</subject><subject>Morphogenesis</subject><subject>N-Acetylglucosamine</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Physiological aspects</subject><subject>Polysaccharides - chemistry</subject><subject>Protein Binding</subject><subject>Protein Subunits - metabolism</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Psychiatry</subject><subject>Rats</subject><subject>Receptors, AMPA - chemistry</subject><subject>Receptors, AMPA - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Schizophrenia</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Synaptic transmission</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLts_2BshsHYLpJJlmTZN4NQui3Q0rGvW3Esy4mCImWSHJZ_P6VxSzx6MQy2kJ_3PTrn6GTZS4xmmHD8Ye16b8HMts6qGUI1LRh7lJ3jmhTTskDk8cn6LHsWwhohRqqyfJqdFZRjUnFynsnLnTN91M6C12afS2eD8jvV5luIUXmbuy6fX3-d515JtY3O56FveqtjvjR76cLewEGda5tfw2YDRoPNO-9sBJPcfFR_nmdPOjBBvRi-k-znp8sfF1-mVzefFxfzq6nkrIpTSmRJKeMVUwTLQlJogEFNuJQtalFKsShRSxXDCLWyrRtclh2TVUNLTBQuySR7ffTdGhfEUJ8gMEu5FpynakyyxZFoHazF1usN-L1woMXthvNLAT5qaZRQFeeAigazrqBd19UMQaofww3mKp0ueX0covXNRrVS2ejBjEzHf6xeiaXbCVLzumIoGbwbDLz73asQxUYHqYwBq1x_e25KSYHSa5K9-Qd9OLuBWkJKQNvOpbjyYCrmhDNWEcoPYWcPUOlp1Uan9qtOp_2R4P1IkJjU1LiEPgSx-P7t_9mbX2P27Qm7UmDiKgyXMYxBegSldyF41d0XGSNxmIW7aojDLIhhFpLs1WmD7kV3l5_8BQtzBJE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Tucholski, Janusz</creator><creator>Pinner, Anita L</creator><creator>Simmons, Micah S</creator><creator>Meador-Woodruff, James H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140401</creationdate><title>Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex</title><author>Tucholski, Janusz ; Pinner, Anita L ; Simmons, Micah S ; Meador-Woodruff, James H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-43c6445785e31c2c4aba5a937ccd0d0009260d4e5100dcd9b166f5c8b4613e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMPA receptors</topic><topic>Animal models</topic><topic>Animals</topic><topic>Binding</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Brain</topic><topic>Cortex (frontal)</topic><topic>Cues</topic><topic>Deglycosylation</topic><topic>Endoplasmic reticulum</topic><topic>Evolution</topic><topic>Frontal Lobe - metabolism</topic><topic>Frontal lobes</topic><topic>Genetic aspects</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Lectins</topic><topic>Lectins - metabolism</topic><topic>Ligands</topic><topic>Macaca nemestrina</topic><topic>Mammals</topic><topic>Mannose</topic><topic>Morphogenesis</topic><topic>N-Acetylglucosamine</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Physiological aspects</topic><topic>Polysaccharides - chemistry</topic><topic>Protein Binding</topic><topic>Protein Subunits - metabolism</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Psychiatry</topic><topic>Rats</topic><topic>Receptors, AMPA - chemistry</topic><topic>Receptors, AMPA - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Schizophrenia</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Synaptic transmission</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucholski, Janusz</creatorcontrib><creatorcontrib>Pinner, Anita L</creatorcontrib><creatorcontrib>Simmons, Micah S</creatorcontrib><creatorcontrib>Meador-Woodruff, James H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucholski, Janusz</au><au>Pinner, Anita L</au><au>Simmons, Micah S</au><au>Meador-Woodruff, James H</au><au>Surolia, Avadhesha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>9</volume><issue>4</issue><spage>e94255</spage><epage>e94255</epage><pages>e94255-e94255</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24713873</pmid><doi>10.1371/journal.pone.0094255</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-04, Vol.9 (4), p.e94255-e94255 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1513827719 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | AMPA receptors Animal models Animals Binding Biological Evolution Biology and Life Sciences Biosynthesis Brain Cortex (frontal) Cues Deglycosylation Endoplasmic reticulum Evolution Frontal Lobe - metabolism Frontal lobes Genetic aspects Glutamatergic transmission Glutamic acid receptors Glycoproteins Glycosylation Homology Humans Immunoglobulins Lectins Lectins - metabolism Ligands Macaca nemestrina Mammals Mannose Morphogenesis N-Acetylglucosamine Neurobiology Neurons Neurosciences Neurotransmission Physiological aspects Polysaccharides - chemistry Protein Binding Protein Subunits - metabolism Protein transport Proteins Psychiatry Rats Receptors, AMPA - chemistry Receptors, AMPA - metabolism Research and Analysis Methods Rodents Schizophrenia Species Specificity Studies Synaptic transmission α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionarily%20conserved%20pattern%20of%20AMPA%20receptor%20subunit%20glycosylation%20in%20Mammalian%20frontal%20cortex&rft.jtitle=PloS%20one&rft.au=Tucholski,%20Janusz&rft.date=2014-04-01&rft.volume=9&rft.issue=4&rft.spage=e94255&rft.epage=e94255&rft.pages=e94255-e94255&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0094255&rft_dat=%3Cgale_plos_%3EA375583470%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513827719&rft_id=info:pmid/24713873&rft_galeid=A375583470&rft_doaj_id=oai_doaj_org_article_e877a02b15f24fff950a05351b17ec2c&rfr_iscdi=true |