Discovering pair-wise genetic interactions: an information theory-based approach

Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-03, Vol.9 (3), p.e92310
Hauptverfasser: Ignac, Tomasz M, Skupin, Alexander, Sakhanenko, Nikita A, Galas, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e92310
container_title PloS one
container_volume 9
creator Ignac, Tomasz M
Skupin, Alexander
Sakhanenko, Nikita A
Galas, David J
description Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies.
doi_str_mv 10.1371/journal.pone.0092310
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1510500415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478746977</galeid><doaj_id>oai_doaj_org_article_bf8be54af37246b481e56953a661e1f6</doaj_id><sourcerecordid>A478746977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ab09c1276844f51e7192c555745107ee0bebab6e3cf9b2bd914ee8af29cf5d73</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7of-A9GCIHjRMWm-Gi-EZf0aWFjRxduQpG87GTpNTTrr7r83s9NdpqAgvUh5-5zT5ORk2QuMFpgI_G7tt6HX3WLwPSwQkiXB6FF2jCUpC14i8vjg_Sg7iXGNECMV50-zo5JygSRhx9m3jy5afw3B9W0-aBeK3y5C3kIPo7O560cI2o7O9_F9rvs0aHzY6N0gH1fgw21hdIQ618MQvLarZ9mTRncRnk_raXb1-dPV-dfi4vLL8vzsorBclmOhDZIWl4JXlDYMg8CytIwxQRlGAgAZMNpwILaRpjS1xBSg0k0pbcNqQU6zV3vbofNRTVlEhZOaIUQxS8RyT9Rer9UQ3EaHW-W1U3cDH1qlQzpjB8o0lQFGdUNESsbQCgPjkhHNOQbc8OT1Yfrb1mygttCPQXcz0_mX3q1U668VkZwLUSWD15NB8L-2EMd_bHmiWp12tYs6mdlNuiF1RkUlKJdid_TFX6j01LBxNrWhcWk-E7ydCRIzws3Y6m2Mavnj-_-zlz_n7JsDdgW6G1fRd9u7tsxBugdt8DEGaB6Sw0jtynyfhtqVWU1lTrKXh6k_iO7bS_4AK0vwIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510500415</pqid></control><display><type>article</type><title>Discovering pair-wise genetic interactions: an information theory-based approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ignac, Tomasz M ; Skupin, Alexander ; Sakhanenko, Nikita A ; Galas, David J</creator><creatorcontrib>Ignac, Tomasz M ; Skupin, Alexander ; Sakhanenko, Nikita A ; Galas, David J</creatorcontrib><description>Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0092310</identifier><identifier>PMID: 24670935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal models ; Animals ; Biology and Life Sciences ; Body Weight - genetics ; Computer and Information Sciences ; Computer simulation ; Data processing ; Datasets ; Diabetes ; Environmental factors ; Epistasis, Genetic ; Female ; Gene expression ; Genetic aspects ; Genetic diversity ; Genetic Markers ; Genetic research ; Genetics ; Genomes ; Genomics ; Genotype &amp; phenotype ; Humans ; Identification methods ; Information Theory ; Male ; Medicine and Health Sciences ; Methods ; Mice ; Models, Genetic ; Phenotype ; Phenotypic variations ; Physical Sciences ; Polymorphism, Single Nucleotide ; Random variables ; Saccharomyces cerevisiae - genetics ; Social Sciences ; Sporulation ; Statistical methods ; Yeast</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e92310</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Ignac et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ignac et al 2014 Ignac et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ab09c1276844f51e7192c555745107ee0bebab6e3cf9b2bd914ee8af29cf5d73</citedby><cites>FETCH-LOGICAL-c692t-ab09c1276844f51e7192c555745107ee0bebab6e3cf9b2bd914ee8af29cf5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966778/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966778/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24670935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignac, Tomasz M</creatorcontrib><creatorcontrib>Skupin, Alexander</creatorcontrib><creatorcontrib>Sakhanenko, Nikita A</creatorcontrib><creatorcontrib>Galas, David J</creatorcontrib><title>Discovering pair-wise genetic interactions: an information theory-based approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies.</description><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Body Weight - genetics</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Environmental factors</subject><subject>Epistasis, Genetic</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Markers</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Information Theory</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Random variables</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Social Sciences</subject><subject>Sporulation</subject><subject>Statistical methods</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7of-A9GCIHjRMWm-Gi-EZf0aWFjRxduQpG87GTpNTTrr7r83s9NdpqAgvUh5-5zT5ORk2QuMFpgI_G7tt6HX3WLwPSwQkiXB6FF2jCUpC14i8vjg_Sg7iXGNECMV50-zo5JygSRhx9m3jy5afw3B9W0-aBeK3y5C3kIPo7O560cI2o7O9_F9rvs0aHzY6N0gH1fgw21hdIQ618MQvLarZ9mTRncRnk_raXb1-dPV-dfi4vLL8vzsorBclmOhDZIWl4JXlDYMg8CytIwxQRlGAgAZMNpwILaRpjS1xBSg0k0pbcNqQU6zV3vbofNRTVlEhZOaIUQxS8RyT9Rer9UQ3EaHW-W1U3cDH1qlQzpjB8o0lQFGdUNESsbQCgPjkhHNOQbc8OT1Yfrb1mygttCPQXcz0_mX3q1U668VkZwLUSWD15NB8L-2EMd_bHmiWp12tYs6mdlNuiF1RkUlKJdid_TFX6j01LBxNrWhcWk-E7ydCRIzws3Y6m2Mavnj-_-zlz_n7JsDdgW6G1fRd9u7tsxBugdt8DEGaB6Sw0jtynyfhtqVWU1lTrKXh6k_iO7bS_4AK0vwIQ</recordid><startdate>20140326</startdate><enddate>20140326</enddate><creator>Ignac, Tomasz M</creator><creator>Skupin, Alexander</creator><creator>Sakhanenko, Nikita A</creator><creator>Galas, David J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140326</creationdate><title>Discovering pair-wise genetic interactions: an information theory-based approach</title><author>Ignac, Tomasz M ; Skupin, Alexander ; Sakhanenko, Nikita A ; Galas, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ab09c1276844f51e7192c555745107ee0bebab6e3cf9b2bd914ee8af29cf5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Body Weight - genetics</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Environmental factors</topic><topic>Epistasis, Genetic</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Markers</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Information Theory</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Random variables</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Social Sciences</topic><topic>Sporulation</topic><topic>Statistical methods</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignac, Tomasz M</creatorcontrib><creatorcontrib>Skupin, Alexander</creatorcontrib><creatorcontrib>Sakhanenko, Nikita A</creatorcontrib><creatorcontrib>Galas, David J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignac, Tomasz M</au><au>Skupin, Alexander</au><au>Sakhanenko, Nikita A</au><au>Galas, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering pair-wise genetic interactions: an information theory-based approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-26</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e92310</spage><pages>e92310-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24670935</pmid><doi>10.1371/journal.pone.0092310</doi><tpages>e92310</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-03, Vol.9 (3), p.e92310
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1510500415
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Animal models
Animals
Biology and Life Sciences
Body Weight - genetics
Computer and Information Sciences
Computer simulation
Data processing
Datasets
Diabetes
Environmental factors
Epistasis, Genetic
Female
Gene expression
Genetic aspects
Genetic diversity
Genetic Markers
Genetic research
Genetics
Genomes
Genomics
Genotype & phenotype
Humans
Identification methods
Information Theory
Male
Medicine and Health Sciences
Methods
Mice
Models, Genetic
Phenotype
Phenotypic variations
Physical Sciences
Polymorphism, Single Nucleotide
Random variables
Saccharomyces cerevisiae - genetics
Social Sciences
Sporulation
Statistical methods
Yeast
title Discovering pair-wise genetic interactions: an information theory-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20pair-wise%20genetic%20interactions:%20an%20information%20theory-based%20approach&rft.jtitle=PloS%20one&rft.au=Ignac,%20Tomasz%20M&rft.date=2014-03-26&rft.volume=9&rft.issue=3&rft.spage=e92310&rft.pages=e92310-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0092310&rft_dat=%3Cgale_plos_%3EA478746977%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510500415&rft_id=info:pmid/24670935&rft_galeid=A478746977&rft_doaj_id=oai_doaj_org_article_bf8be54af37246b481e56953a661e1f6&rfr_iscdi=true