Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways

Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-03, Vol.9 (3), p.e92857
Hauptverfasser: Wu, Man, Du, Yan, Liu, Yiwen, He, Yiqing, Yang, Cuixia, Wang, Wenjuan, Gao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e92857
container_title PloS one
container_volume 9
creator Wu, Man
Du, Yan
Liu, Yiwen
He, Yiqing
Yang, Cuixia
Wang, Wenjuan
Gao, Feng
description Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify the underlying molecular mechanisms. Our results showed that LMW-HA stimulation significantly increased lymphatic endothelial cells (LECs) proliferation, migration and tube formation. Further experiments demonstrated that LMW-HA altered actin cytoskeleton rearrangement and increased the formation of intense stress fibers, lamellipodia and filopodia. Mechanistically, LMW-HA stimulation resulted in rapid tyrosine phosphorylation of protein kinase C α/βII (PKCα/βII) and extracellular-regulated kinase 1/2 (ERK1/2). Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a homologue of CD44, is the main cell surface receptor for HA in LECs. Blocking the binding interaction of LMW-HA with LYVE-1 using neutralizing anti-LYVE-1 antibodies significantly inhibited LECs proliferation, migration, tube formation and signal transduction induced by LMW-HA, suggesting that LMW-HA may play a critical role in the processes required for lymphangiogenesis through interactions with its receptor LYVE-1 and triggering intracellular signal cascades.
doi_str_mv 10.1371/journal.pone.0092857
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1510195146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478752247</galeid><doaj_id>oai_doaj_org_article_1eabc04ed1af4cfc8534abd2d6d3267e</doaj_id><sourcerecordid>A478752247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-b7fa3325568f47877891ec1ce678f9491b34cf92d3c99b03895ff40de405605d3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx6T5am-EZVl1YGDBjwWvQpqkbYZOMpukjvPvzTjdZQoKkouE5DnvOXl5s-wlBAuIGHy_dqO3YlhsndULAOqyIuxRdg5rVBa0BOjxyfksexbCGgCCKkqfZmclppQxQs4ztXK7fOMGLcdB-HynTdfHvN-LYfTOCpsbq0apQz7sN9te2M64TlsdTMhj793Y9fnqx-11AYuNVkZErfJgujSXsV2-FbHfiX14nj1pxRD0i2m_yL5_vP529blY3XxaXl2uCslIFYuGtQKhkhBatZhVjFU11BJKTVnV1riGDcKyrUuFZF03AFU1aVsMlMaAUEAUusheH3W3gwt8MihwSCCANYGYJmJ5JJQTa771ZiP8njth-J8L5zsufDRy0Bxq0UiAtYKiTW1lRRAWjSoVVaikTCetD1O3sUmfl9pGL4aZ6PzFmp537idHNSWYgSTwZhLw7m7UIf5j5InqRJrK2NYlMbkxQfLLg0ukLDFL1OIvVFpKb4xMEWlNup8VvJsVJCbqX7ETYwh8-fXL_7M3t3P27QnbazHEPrhhjMbZMAfxEZTeheB1--AcBPyQ8Hs3-CHhfEp4Knt16vpD0X2k0W8vn_fv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510195146</pqid></control><display><type>article</type><title>Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Man ; Du, Yan ; Liu, Yiwen ; He, Yiqing ; Yang, Cuixia ; Wang, Wenjuan ; Gao, Feng</creator><contributor>Addison, Christina Lynn</contributor><creatorcontrib>Wu, Man ; Du, Yan ; Liu, Yiwen ; He, Yiqing ; Yang, Cuixia ; Wang, Wenjuan ; Gao, Feng ; Addison, Christina Lynn</creatorcontrib><description>Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify the underlying molecular mechanisms. Our results showed that LMW-HA stimulation significantly increased lymphatic endothelial cells (LECs) proliferation, migration and tube formation. Further experiments demonstrated that LMW-HA altered actin cytoskeleton rearrangement and increased the formation of intense stress fibers, lamellipodia and filopodia. Mechanistically, LMW-HA stimulation resulted in rapid tyrosine phosphorylation of protein kinase C α/βII (PKCα/βII) and extracellular-regulated kinase 1/2 (ERK1/2). Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a homologue of CD44, is the main cell surface receptor for HA in LECs. Blocking the binding interaction of LMW-HA with LYVE-1 using neutralizing anti-LYVE-1 antibodies significantly inhibited LECs proliferation, migration, tube formation and signal transduction induced by LMW-HA, suggesting that LMW-HA may play a critical role in the processes required for lymphangiogenesis through interactions with its receptor LYVE-1 and triggering intracellular signal cascades.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0092857</identifier><identifier>PMID: 24667755</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Adjuvants, Immunologic - pharmacology ; Angiogenesis ; Animals ; Antibodies ; Biology and Life Sciences ; Breast cancer ; Cascades ; CD44 antigen ; Cell adhesion &amp; migration ; Cell Line, Transformed ; Cell migration ; Cell Movement - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell surface ; Cellular signal transduction ; Cytoskeleton ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelium ; Extracellular matrix ; Extracellular signal-regulated kinase ; Fibers ; Filopodia ; Glycoproteins - metabolism ; Homology ; Hyaluronic acid ; Hyaluronic Acid - pharmacology ; Kinases ; Lamellipodia ; Low molecular weights ; Lymphangiogenesis - drug effects ; Lymphatic system ; MAP Kinase Signaling System - drug effects ; Mice ; Molecular biology ; Molecular modelling ; Molecular Weight ; Motility ; Muscle proteins ; Phosphorylation ; Protein kinase C ; Protein Kinases - metabolism ; Signal transduction ; Signaling ; Stimulation ; Studies ; Tumors ; Tyrosine ; Wound healing</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e92857</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Wu et al 2014 Wu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-b7fa3325568f47877891ec1ce678f9491b34cf92d3c99b03895ff40de405605d3</citedby><cites>FETCH-LOGICAL-c758t-b7fa3325568f47877891ec1ce678f9491b34cf92d3c99b03895ff40de405605d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965470/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965470/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24667755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Addison, Christina Lynn</contributor><creatorcontrib>Wu, Man</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Yiwen</creatorcontrib><creatorcontrib>He, Yiqing</creatorcontrib><creatorcontrib>Yang, Cuixia</creatorcontrib><creatorcontrib>Wang, Wenjuan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><title>Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify the underlying molecular mechanisms. Our results showed that LMW-HA stimulation significantly increased lymphatic endothelial cells (LECs) proliferation, migration and tube formation. Further experiments demonstrated that LMW-HA altered actin cytoskeleton rearrangement and increased the formation of intense stress fibers, lamellipodia and filopodia. Mechanistically, LMW-HA stimulation resulted in rapid tyrosine phosphorylation of protein kinase C α/βII (PKCα/βII) and extracellular-regulated kinase 1/2 (ERK1/2). Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a homologue of CD44, is the main cell surface receptor for HA in LECs. Blocking the binding interaction of LMW-HA with LYVE-1 using neutralizing anti-LYVE-1 antibodies significantly inhibited LECs proliferation, migration, tube formation and signal transduction induced by LMW-HA, suggesting that LMW-HA may play a critical role in the processes required for lymphangiogenesis through interactions with its receptor LYVE-1 and triggering intracellular signal cascades.</description><subject>Actin</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Cascades</subject><subject>CD44 antigen</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Transformed</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell surface</subject><subject>Cellular signal transduction</subject><subject>Cytoskeleton</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Extracellular matrix</subject><subject>Extracellular signal-regulated kinase</subject><subject>Fibers</subject><subject>Filopodia</subject><subject>Glycoproteins - metabolism</subject><subject>Homology</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - pharmacology</subject><subject>Kinases</subject><subject>Lamellipodia</subject><subject>Low molecular weights</subject><subject>Lymphangiogenesis - drug effects</subject><subject>Lymphatic system</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Molecular modelling</subject><subject>Molecular Weight</subject><subject>Motility</subject><subject>Muscle proteins</subject><subject>Phosphorylation</subject><subject>Protein kinase C</subject><subject>Protein Kinases - metabolism</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stimulation</subject><subject>Studies</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Wound healing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx6T5am-EZVl1YGDBjwWvQpqkbYZOMpukjvPvzTjdZQoKkouE5DnvOXl5s-wlBAuIGHy_dqO3YlhsndULAOqyIuxRdg5rVBa0BOjxyfksexbCGgCCKkqfZmclppQxQs4ztXK7fOMGLcdB-HynTdfHvN-LYfTOCpsbq0apQz7sN9te2M64TlsdTMhj793Y9fnqx-11AYuNVkZErfJgujSXsV2-FbHfiX14nj1pxRD0i2m_yL5_vP529blY3XxaXl2uCslIFYuGtQKhkhBatZhVjFU11BJKTVnV1riGDcKyrUuFZF03AFU1aVsMlMaAUEAUusheH3W3gwt8MihwSCCANYGYJmJ5JJQTa771ZiP8njth-J8L5zsufDRy0Bxq0UiAtYKiTW1lRRAWjSoVVaikTCetD1O3sUmfl9pGL4aZ6PzFmp537idHNSWYgSTwZhLw7m7UIf5j5InqRJrK2NYlMbkxQfLLg0ukLDFL1OIvVFpKb4xMEWlNup8VvJsVJCbqX7ETYwh8-fXL_7M3t3P27QnbazHEPrhhjMbZMAfxEZTeheB1--AcBPyQ8Hs3-CHhfEp4Knt16vpD0X2k0W8vn_fv</recordid><startdate>20140325</startdate><enddate>20140325</enddate><creator>Wu, Man</creator><creator>Du, Yan</creator><creator>Liu, Yiwen</creator><creator>He, Yiqing</creator><creator>Yang, Cuixia</creator><creator>Wang, Wenjuan</creator><creator>Gao, Feng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140325</creationdate><title>Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways</title><author>Wu, Man ; Du, Yan ; Liu, Yiwen ; He, Yiqing ; Yang, Cuixia ; Wang, Wenjuan ; Gao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-b7fa3325568f47877891ec1ce678f9491b34cf92d3c99b03895ff40de405605d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Cascades</topic><topic>CD44 antigen</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Transformed</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell surface</topic><topic>Cellular signal transduction</topic><topic>Cytoskeleton</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Extracellular matrix</topic><topic>Extracellular signal-regulated kinase</topic><topic>Fibers</topic><topic>Filopodia</topic><topic>Glycoproteins - metabolism</topic><topic>Homology</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - pharmacology</topic><topic>Kinases</topic><topic>Lamellipodia</topic><topic>Low molecular weights</topic><topic>Lymphangiogenesis - drug effects</topic><topic>Lymphatic system</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Molecular modelling</topic><topic>Molecular Weight</topic><topic>Motility</topic><topic>Muscle proteins</topic><topic>Phosphorylation</topic><topic>Protein kinase C</topic><topic>Protein Kinases - metabolism</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stimulation</topic><topic>Studies</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Man</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Yiwen</creatorcontrib><creatorcontrib>He, Yiqing</creatorcontrib><creatorcontrib>Yang, Cuixia</creatorcontrib><creatorcontrib>Wang, Wenjuan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Man</au><au>Du, Yan</au><au>Liu, Yiwen</au><au>He, Yiqing</au><au>Yang, Cuixia</au><au>Wang, Wenjuan</au><au>Gao, Feng</au><au>Addison, Christina Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-25</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e92857</spage><pages>e92857-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify the underlying molecular mechanisms. Our results showed that LMW-HA stimulation significantly increased lymphatic endothelial cells (LECs) proliferation, migration and tube formation. Further experiments demonstrated that LMW-HA altered actin cytoskeleton rearrangement and increased the formation of intense stress fibers, lamellipodia and filopodia. Mechanistically, LMW-HA stimulation resulted in rapid tyrosine phosphorylation of protein kinase C α/βII (PKCα/βII) and extracellular-regulated kinase 1/2 (ERK1/2). Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a homologue of CD44, is the main cell surface receptor for HA in LECs. Blocking the binding interaction of LMW-HA with LYVE-1 using neutralizing anti-LYVE-1 antibodies significantly inhibited LECs proliferation, migration, tube formation and signal transduction induced by LMW-HA, suggesting that LMW-HA may play a critical role in the processes required for lymphangiogenesis through interactions with its receptor LYVE-1 and triggering intracellular signal cascades.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24667755</pmid><doi>10.1371/journal.pone.0092857</doi><tpages>e92857</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-03, Vol.9 (3), p.e92857
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1510195146
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Actin
Adjuvants, Immunologic - pharmacology
Angiogenesis
Animals
Antibodies
Biology and Life Sciences
Breast cancer
Cascades
CD44 antigen
Cell adhesion & migration
Cell Line, Transformed
Cell migration
Cell Movement - drug effects
Cell proliferation
Cell Proliferation - drug effects
Cell surface
Cellular signal transduction
Cytoskeleton
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Endothelium
Extracellular matrix
Extracellular signal-regulated kinase
Fibers
Filopodia
Glycoproteins - metabolism
Homology
Hyaluronic acid
Hyaluronic Acid - pharmacology
Kinases
Lamellipodia
Low molecular weights
Lymphangiogenesis - drug effects
Lymphatic system
MAP Kinase Signaling System - drug effects
Mice
Molecular biology
Molecular modelling
Molecular Weight
Motility
Muscle proteins
Phosphorylation
Protein kinase C
Protein Kinases - metabolism
Signal transduction
Signaling
Stimulation
Studies
Tumors
Tyrosine
Wound healing
title Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20molecular%20weight%20hyaluronan%20induces%20lymphangiogenesis%20through%20LYVE-1-mediated%20signaling%20pathways&rft.jtitle=PloS%20one&rft.au=Wu,%20Man&rft.date=2014-03-25&rft.volume=9&rft.issue=3&rft.spage=e92857&rft.pages=e92857-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0092857&rft_dat=%3Cgale_plos_%3EA478752247%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510195146&rft_id=info:pmid/24667755&rft_galeid=A478752247&rft_doaj_id=oai_doaj_org_article_1eabc04ed1af4cfc8534abd2d6d3267e&rfr_iscdi=true