Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors
Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice i...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-03, Vol.9 (3), p.e90451-e90451 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e90451 |
---|---|
container_issue | 3 |
container_start_page | e90451 |
container_title | PloS one |
container_volume | 9 |
creator | Stanić, Davor Dubois, Sydney Chua, Hui Kheng Tonge, Bruce Rinehart, Nicole Horne, Malcolm K Boon, Wah Chin |
description | Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. |
doi_str_mv | 10.1371/journal.pone.0090451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1508765476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2e38d824c5a47d18d7429725ba8da1c</doaj_id><sourcerecordid>3251062901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ac8d7210bfa7a62d74440045411430b72e2ba835ca10e4ad66a3058d2585df313</originalsourceid><addsrcrecordid>eNptUktuFDEQbSEQCYEbILDEhgUz-N89GyQ04jNSJDawtqrt6pkedduD7QmBs3AJOEjOhOeTKIlYWFUqv3p-VX5V9ZzRKRM1e7sO2-hhmG6CxymlMyoVe1CdspngE82peHgrP6mepLSmVIlG68fVCZdaaqXr0-r3fAURbMbY_4LcB09CRyCGETIkJHi5iZjSrt57kldIwG2HTEYYSuod6XCfjmFb0G2E3k_JYkrmAS_7lNFbJD_6vCIBU45hiZ5EtLjJISZy9WdPcfX3zT6Wcw_xtHrUwZDw2TGeVd8-fvg6_zw5__JpMX9_PrGK6zwB27iaM9p2UIPmrpZS0rIOyZgUtK058hYaoSwwihKc1iCoahxXjXKdYOKsenng3QwhmeNik2GKNrVWstYFsTggXIC12cR-hPjTBOjNvhDi0kDMvR3QtBxF4xourQJZO1a0ST6ruSoaHDBbuN4dX9u2IzqLPkcY7pDevfH9yizDhREzTRndiXl9JIjh-7Ys1ox9sjgM4LH8w073TDKhNS_QV_eg_59OHlA2hpQidjdiGDU7s113mZ3ZzNFspe3F7UFumq7dJf4BLdbWFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508765476</pqid></control><display><type>article</type><title>Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Stanić, Davor ; Dubois, Sydney ; Chua, Hui Kheng ; Tonge, Bruce ; Rinehart, Nicole ; Horne, Malcolm K ; Boon, Wah Chin</creator><contributor>Jasoni, Christine</contributor><creatorcontrib>Stanić, Davor ; Dubois, Sydney ; Chua, Hui Kheng ; Tonge, Bruce ; Rinehart, Nicole ; Horne, Malcolm K ; Boon, Wah Chin ; Jasoni, Christine</creatorcontrib><description>Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0090451</identifier><identifier>PMID: 24646567</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amygdala ; Androgen receptors ; Androgens ; Animals ; Aromatase ; Aromatase - genetics ; Aromatase - metabolism ; Artificial chromosomes ; Autocrine signalling ; Binding sites ; Biological effects ; Biology and Life Sciences ; Brain ; Brain - anatomy & histology ; Brain - metabolism ; Brain Mapping ; Chemical synthesis ; Coexistence ; Estrogen Receptor alpha - genetics ; Estrogen Receptor alpha - metabolism ; Estrogen Receptor beta - genetics ; Estrogen Receptor beta - metabolism ; Estrogen receptors ; Estrogens ; Female ; Females ; Fibers ; Fluorescence ; Gene expression ; Gene Expression Regulation ; Genes, Reporter ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hybridization ; Hypothalamus ; Hypothalamus (medial) ; Immunoglobulins ; Immunohistochemistry ; Male ; Males ; Medicine and Health Sciences ; Mental health ; Mice ; Mice, Transgenic ; Microscopy ; Nervous system ; Neurodegeneration ; Neurosciences ; Nuclei (cytology) ; Olfactory bulb ; Paracrine signalling ; Physiology ; Preoptic area ; Protein expression ; Proteins ; Receptors ; Receptors, Androgen - genetics ; Receptors, Androgen - metabolism ; Research and Analysis Methods ; Rodents ; Septum ; Sex differences ; Sex Factors ; Signal Transduction ; Stria terminalis ; Studies ; Transcription, Genetic</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e90451-e90451</ispartof><rights>2014 Stanić et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Stanić et al 2014 Stanić et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ac8d7210bfa7a62d74440045411430b72e2ba835ca10e4ad66a3058d2585df313</citedby><cites>FETCH-LOGICAL-c526t-ac8d7210bfa7a62d74440045411430b72e2ba835ca10e4ad66a3058d2585df313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960106/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960106/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24646567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jasoni, Christine</contributor><creatorcontrib>Stanić, Davor</creatorcontrib><creatorcontrib>Dubois, Sydney</creatorcontrib><creatorcontrib>Chua, Hui Kheng</creatorcontrib><creatorcontrib>Tonge, Bruce</creatorcontrib><creatorcontrib>Rinehart, Nicole</creatorcontrib><creatorcontrib>Horne, Malcolm K</creatorcontrib><creatorcontrib>Boon, Wah Chin</creatorcontrib><title>Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females.</description><subject>Amygdala</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Animals</subject><subject>Aromatase</subject><subject>Aromatase - genetics</subject><subject>Aromatase - metabolism</subject><subject>Artificial chromosomes</subject><subject>Autocrine signalling</subject><subject>Binding sites</subject><subject>Biological effects</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Chemical synthesis</subject><subject>Coexistence</subject><subject>Estrogen Receptor alpha - genetics</subject><subject>Estrogen Receptor alpha - metabolism</subject><subject>Estrogen Receptor beta - genetics</subject><subject>Estrogen Receptor beta - metabolism</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Female</subject><subject>Females</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hybridization</subject><subject>Hypothalamus</subject><subject>Hypothalamus (medial)</subject><subject>Immunoglobulins</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Males</subject><subject>Medicine and Health Sciences</subject><subject>Mental health</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurosciences</subject><subject>Nuclei (cytology)</subject><subject>Olfactory bulb</subject><subject>Paracrine signalling</subject><subject>Physiology</subject><subject>Preoptic area</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Androgen - genetics</subject><subject>Receptors, Androgen - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Septum</subject><subject>Sex differences</subject><subject>Sex Factors</subject><subject>Signal Transduction</subject><subject>Stria terminalis</subject><subject>Studies</subject><subject>Transcription, Genetic</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUktuFDEQbSEQCYEbILDEhgUz-N89GyQ04jNSJDawtqrt6pkedduD7QmBs3AJOEjOhOeTKIlYWFUqv3p-VX5V9ZzRKRM1e7sO2-hhmG6CxymlMyoVe1CdspngE82peHgrP6mepLSmVIlG68fVCZdaaqXr0-r3fAURbMbY_4LcB09CRyCGETIkJHi5iZjSrt57kldIwG2HTEYYSuod6XCfjmFb0G2E3k_JYkrmAS_7lNFbJD_6vCIBU45hiZ5EtLjJISZy9WdPcfX3zT6Wcw_xtHrUwZDw2TGeVd8-fvg6_zw5__JpMX9_PrGK6zwB27iaM9p2UIPmrpZS0rIOyZgUtK058hYaoSwwihKc1iCoahxXjXKdYOKsenng3QwhmeNik2GKNrVWstYFsTggXIC12cR-hPjTBOjNvhDi0kDMvR3QtBxF4xourQJZO1a0ST6ruSoaHDBbuN4dX9u2IzqLPkcY7pDevfH9yizDhREzTRndiXl9JIjh-7Ys1ox9sjgM4LH8w073TDKhNS_QV_eg_59OHlA2hpQidjdiGDU7s113mZ3ZzNFspe3F7UFumq7dJf4BLdbWFQ</recordid><startdate>20140319</startdate><enddate>20140319</enddate><creator>Stanić, Davor</creator><creator>Dubois, Sydney</creator><creator>Chua, Hui Kheng</creator><creator>Tonge, Bruce</creator><creator>Rinehart, Nicole</creator><creator>Horne, Malcolm K</creator><creator>Boon, Wah Chin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140319</creationdate><title>Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors</title><author>Stanić, Davor ; Dubois, Sydney ; Chua, Hui Kheng ; Tonge, Bruce ; Rinehart, Nicole ; Horne, Malcolm K ; Boon, Wah Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ac8d7210bfa7a62d74440045411430b72e2ba835ca10e4ad66a3058d2585df313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amygdala</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Animals</topic><topic>Aromatase</topic><topic>Aromatase - genetics</topic><topic>Aromatase - metabolism</topic><topic>Artificial chromosomes</topic><topic>Autocrine signalling</topic><topic>Binding sites</topic><topic>Biological effects</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Chemical synthesis</topic><topic>Coexistence</topic><topic>Estrogen Receptor alpha - genetics</topic><topic>Estrogen Receptor alpha - metabolism</topic><topic>Estrogen Receptor beta - genetics</topic><topic>Estrogen Receptor beta - metabolism</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Female</topic><topic>Females</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hybridization</topic><topic>Hypothalamus</topic><topic>Hypothalamus (medial)</topic><topic>Immunoglobulins</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Males</topic><topic>Medicine and Health Sciences</topic><topic>Mental health</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurosciences</topic><topic>Nuclei (cytology)</topic><topic>Olfactory bulb</topic><topic>Paracrine signalling</topic><topic>Physiology</topic><topic>Preoptic area</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Androgen - genetics</topic><topic>Receptors, Androgen - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Septum</topic><topic>Sex differences</topic><topic>Sex Factors</topic><topic>Signal Transduction</topic><topic>Stria terminalis</topic><topic>Studies</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanić, Davor</creatorcontrib><creatorcontrib>Dubois, Sydney</creatorcontrib><creatorcontrib>Chua, Hui Kheng</creatorcontrib><creatorcontrib>Tonge, Bruce</creatorcontrib><creatorcontrib>Rinehart, Nicole</creatorcontrib><creatorcontrib>Horne, Malcolm K</creatorcontrib><creatorcontrib>Boon, Wah Chin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanić, Davor</au><au>Dubois, Sydney</au><au>Chua, Hui Kheng</au><au>Tonge, Bruce</au><au>Rinehart, Nicole</au><au>Horne, Malcolm K</au><au>Boon, Wah Chin</au><au>Jasoni, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-19</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e90451</spage><epage>e90451</epage><pages>e90451-e90451</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24646567</pmid><doi>10.1371/journal.pone.0090451</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-03, Vol.9 (3), p.e90451-e90451 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1508765476 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Amygdala Androgen receptors Androgens Animals Aromatase Aromatase - genetics Aromatase - metabolism Artificial chromosomes Autocrine signalling Binding sites Biological effects Biology and Life Sciences Brain Brain - anatomy & histology Brain - metabolism Brain Mapping Chemical synthesis Coexistence Estrogen Receptor alpha - genetics Estrogen Receptor alpha - metabolism Estrogen Receptor beta - genetics Estrogen Receptor beta - metabolism Estrogen receptors Estrogens Female Females Fibers Fluorescence Gene expression Gene Expression Regulation Genes, Reporter Green fluorescent protein Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Hybridization Hypothalamus Hypothalamus (medial) Immunoglobulins Immunohistochemistry Male Males Medicine and Health Sciences Mental health Mice Mice, Transgenic Microscopy Nervous system Neurodegeneration Neurosciences Nuclei (cytology) Olfactory bulb Paracrine signalling Physiology Preoptic area Protein expression Proteins Receptors Receptors, Androgen - genetics Receptors, Androgen - metabolism Research and Analysis Methods Rodents Septum Sex differences Sex Factors Signal Transduction Stria terminalis Studies Transcription, Genetic |
title | Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20aromatase%20expression%20in%20the%20adult%20male%20and%20female%20mouse%20brain.%20I.%20Coexistence%20with%20oestrogen%20receptors%20%CE%B1%20and%20%CE%B2,%20and%20androgen%20receptors&rft.jtitle=PloS%20one&rft.au=Stani%C4%87,%20Davor&rft.date=2014-03-19&rft.volume=9&rft.issue=3&rft.spage=e90451&rft.epage=e90451&rft.pages=e90451-e90451&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0090451&rft_dat=%3Cproquest_plos_%3E3251062901%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508765476&rft_id=info:pmid/24646567&rft_doaj_id=oai_doaj_org_article_b2e38d824c5a47d18d7429725ba8da1c&rfr_iscdi=true |