Acetate kinase isozymes confer robustness in acetate metabolism
Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 spec...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-03, Vol.9 (3), p.e92256-e92256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e92256 |
---|---|
container_issue | 3 |
container_start_page | e92256 |
container_title | PloS one |
container_volume | 9 |
creator | Chan, Siu Hung Joshua Nørregaard, Lasse Solem, Christian Jensen, Peter Ruhdal |
description | Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate. |
doi_str_mv | 10.1371/journal.pone.0092256 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1508089401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478761006</galeid><doaj_id>oai_doaj_org_article_a02eb3ac2d19461791ab562806bd4ca0</doaj_id><sourcerecordid>A478761006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5f150430d8ff90b342beb5c2f6bed83d3345ec9cd0e102c0339f789c99ab6bd13</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7rr6DUQLgujDjLm0afKiDIuXgYUFb68hTU9nMrbJbJKK66c3dbrLVPZB8nDCye_8T84ly55itMS0wm92bvBWdcu9s7BESBBSsnvZKRaULBhB9P7R_SR7FMIOoZJyxh5mJ6RglGNUnmbvVhqiipD_MFYFyE1wv697CLl2tgWfe1cPIVoIITc2VxPcJ1O7zoT-cfagVV2AJ5M9y759eP_1_NPi4vLj-nx1sdBMkLgoW1yigqKGt61ANS1IDXWpSctqaDhtKC1K0EI3CDAiGlEq2ooLLYSqWd1gepY9P-juOxfkVHuQSZUjLgo0EusD0Ti1k3tveuWvpVNG_nU4v5HKR6M7kAoRqKnSpMGiYLgSWNUlIxylVIVWKGm9nbINdQ-NBhu96mai8xdrtnLjfkoqylQvSwKvJgHvrgYIUfYmaOg6ZcENh3-zquK8SuiLf9C7q5uojUoFGNu6lFePonJVVLxiGKEx7fIOKp0GepMmCq1J_lnA61lAYiL8ihs1hCDXXz7_P3v5fc6-PGK3oLq4Da4bonE2zMHiAGrvQvDQ3jYZIznu-U035LjnctrzFPbseEC3QTeLTf8AKY33aA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508089401</pqid></control><display><type>article</type><title>Acetate kinase isozymes confer robustness in acetate metabolism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chan, Siu Hung Joshua ; Nørregaard, Lasse ; Solem, Christian ; Jensen, Peter Ruhdal</creator><contributor>Elias, Dwayne</contributor><creatorcontrib>Chan, Siu Hung Joshua ; Nørregaard, Lasse ; Solem, Christian ; Jensen, Peter Ruhdal ; Elias, Dwayne</creatorcontrib><description>Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0092256</identifier><identifier>PMID: 24638105</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetate kinase ; Acetate Kinase - genetics ; Acetate Kinase - metabolism ; Acetates ; Acetates - metabolism ; Acetates - pharmacology ; Acetic acid ; Acetyl Coenzyme A - metabolism ; Bacteria ; Base Sequence ; Biology and life sciences ; Biomass ; Biosynthesis ; Carbon dioxide ; Coding ; Conserved Sequence ; Dehydrogenases ; E coli ; Enzymes ; Escherichia coli ; Ethanol ; Food ; Gene sequencing ; Genes ; Genes, Bacterial ; Isoenzymes ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Kinases ; Kinetics ; Lactic Acid - metabolism ; Lactococcus lactis ; Lactococcus lactis - drug effects ; Lactococcus lactis - enzymology ; Lactococcus lactis - genetics ; Lactococcus lactis - growth & development ; Maltose - metabolism ; Metabolism ; Metabolites ; Molecular Sequence Data ; Mutation - genetics ; Phosphates ; Phylogeny ; Physiological aspects ; Plasmids ; Protein structure ; Pyruvic Acid - metabolism ; Sequence Homology, Amino Acid ; Species Specificity ; Terminator Regions, Genetic ; Transcription ; Transcription (Genetics) ; Transcription Initiation Site</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e92256-e92256</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Chan et al 2014 Chan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5f150430d8ff90b342beb5c2f6bed83d3345ec9cd0e102c0339f789c99ab6bd13</citedby><cites>FETCH-LOGICAL-c692t-5f150430d8ff90b342beb5c2f6bed83d3345ec9cd0e102c0339f789c99ab6bd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956926/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956926/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24638105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Elias, Dwayne</contributor><creatorcontrib>Chan, Siu Hung Joshua</creatorcontrib><creatorcontrib>Nørregaard, Lasse</creatorcontrib><creatorcontrib>Solem, Christian</creatorcontrib><creatorcontrib>Jensen, Peter Ruhdal</creatorcontrib><title>Acetate kinase isozymes confer robustness in acetate metabolism</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.</description><subject>Acetate kinase</subject><subject>Acetate Kinase - genetics</subject><subject>Acetate Kinase - metabolism</subject><subject>Acetates</subject><subject>Acetates - metabolism</subject><subject>Acetates - pharmacology</subject><subject>Acetic acid</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biology and life sciences</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Carbon dioxide</subject><subject>Coding</subject><subject>Conserved Sequence</subject><subject>Dehydrogenases</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Ethanol</subject><subject>Food</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Isoenzymes</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Lactic Acid - metabolism</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - drug effects</subject><subject>Lactococcus lactis - enzymology</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - growth & development</subject><subject>Maltose - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Phosphates</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Protein structure</subject><subject>Pyruvic Acid - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>Terminator Regions, Genetic</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription Initiation Site</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7rr6DUQLgujDjLm0afKiDIuXgYUFb68hTU9nMrbJbJKK66c3dbrLVPZB8nDCye_8T84ly55itMS0wm92bvBWdcu9s7BESBBSsnvZKRaULBhB9P7R_SR7FMIOoZJyxh5mJ6RglGNUnmbvVhqiipD_MFYFyE1wv697CLl2tgWfe1cPIVoIITc2VxPcJ1O7zoT-cfagVV2AJ5M9y759eP_1_NPi4vLj-nx1sdBMkLgoW1yigqKGt61ANS1IDXWpSctqaDhtKC1K0EI3CDAiGlEq2ooLLYSqWd1gepY9P-juOxfkVHuQSZUjLgo0EusD0Ti1k3tveuWvpVNG_nU4v5HKR6M7kAoRqKnSpMGiYLgSWNUlIxylVIVWKGm9nbINdQ-NBhu96mai8xdrtnLjfkoqylQvSwKvJgHvrgYIUfYmaOg6ZcENh3-zquK8SuiLf9C7q5uojUoFGNu6lFePonJVVLxiGKEx7fIOKp0GepMmCq1J_lnA61lAYiL8ihs1hCDXXz7_P3v5fc6-PGK3oLq4Da4bonE2zMHiAGrvQvDQ3jYZIznu-U035LjnctrzFPbseEC3QTeLTf8AKY33aA</recordid><startdate>20140317</startdate><enddate>20140317</enddate><creator>Chan, Siu Hung Joshua</creator><creator>Nørregaard, Lasse</creator><creator>Solem, Christian</creator><creator>Jensen, Peter Ruhdal</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140317</creationdate><title>Acetate kinase isozymes confer robustness in acetate metabolism</title><author>Chan, Siu Hung Joshua ; Nørregaard, Lasse ; Solem, Christian ; Jensen, Peter Ruhdal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5f150430d8ff90b342beb5c2f6bed83d3345ec9cd0e102c0339f789c99ab6bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acetate kinase</topic><topic>Acetate Kinase - genetics</topic><topic>Acetate Kinase - metabolism</topic><topic>Acetates</topic><topic>Acetates - metabolism</topic><topic>Acetates - pharmacology</topic><topic>Acetic acid</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biology and life sciences</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Carbon dioxide</topic><topic>Coding</topic><topic>Conserved Sequence</topic><topic>Dehydrogenases</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Ethanol</topic><topic>Food</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Isoenzymes</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Lactic Acid - metabolism</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - drug effects</topic><topic>Lactococcus lactis - enzymology</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - growth & development</topic><topic>Maltose - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Phosphates</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Protein structure</topic><topic>Pyruvic Acid - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>Terminator Regions, Genetic</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription Initiation Site</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Siu Hung Joshua</creatorcontrib><creatorcontrib>Nørregaard, Lasse</creatorcontrib><creatorcontrib>Solem, Christian</creatorcontrib><creatorcontrib>Jensen, Peter Ruhdal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Siu Hung Joshua</au><au>Nørregaard, Lasse</au><au>Solem, Christian</au><au>Jensen, Peter Ruhdal</au><au>Elias, Dwayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetate kinase isozymes confer robustness in acetate metabolism</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-17</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e92256</spage><epage>e92256</epage><pages>e92256-e92256</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24638105</pmid><doi>10.1371/journal.pone.0092256</doi><tpages>e92256</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-03, Vol.9 (3), p.e92256-e92256 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1508089401 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetate kinase Acetate Kinase - genetics Acetate Kinase - metabolism Acetates Acetates - metabolism Acetates - pharmacology Acetic acid Acetyl Coenzyme A - metabolism Bacteria Base Sequence Biology and life sciences Biomass Biosynthesis Carbon dioxide Coding Conserved Sequence Dehydrogenases E coli Enzymes Escherichia coli Ethanol Food Gene sequencing Genes Genes, Bacterial Isoenzymes Isoenzymes - genetics Isoenzymes - metabolism Kinases Kinetics Lactic Acid - metabolism Lactococcus lactis Lactococcus lactis - drug effects Lactococcus lactis - enzymology Lactococcus lactis - genetics Lactococcus lactis - growth & development Maltose - metabolism Metabolism Metabolites Molecular Sequence Data Mutation - genetics Phosphates Phylogeny Physiological aspects Plasmids Protein structure Pyruvic Acid - metabolism Sequence Homology, Amino Acid Species Specificity Terminator Regions, Genetic Transcription Transcription (Genetics) Transcription Initiation Site |
title | Acetate kinase isozymes confer robustness in acetate metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetate%20kinase%20isozymes%20confer%20robustness%20in%20acetate%20metabolism&rft.jtitle=PloS%20one&rft.au=Chan,%20Siu%20Hung%20Joshua&rft.date=2014-03-17&rft.volume=9&rft.issue=3&rft.spage=e92256&rft.epage=e92256&rft.pages=e92256-e92256&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0092256&rft_dat=%3Cgale_plos_%3EA478761006%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508089401&rft_id=info:pmid/24638105&rft_galeid=A478761006&rft_doaj_id=oai_doaj_org_article_a02eb3ac2d19461791ab562806bd4ca0&rfr_iscdi=true |