Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats
Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-03, Vol.9 (3), p.e91253 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e91253 |
container_title | PloS one |
container_volume | 9 |
creator | Tuggle, Katherine L Birket, Susan E Cui, Xiaoxia Hong, Jeong Warren, Joe Reid, Lara Chambers, Andre Ji, Diana Gamber, Kevin Chu, Kengyeh K Tearney, Guillermo Tang, Li Ping Fortenberry, James A Du, Ming Cadillac, Joan M Bedwell, David M Rowe, Steven M Sorscher, Eric J Fanucchi, Michelle V |
description | Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous (CFTR+/-) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR-/-) pups. Nasal potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype, similar in many respects to that seen in CF patients. Young CFTR-/- rats exhibited histological abnormalities in the ileum and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR-/- males lacked the vas deferens bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in CFTR-/- animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects, premature truncation alleles, and channel gating abnormalities. |
doi_str_mv | 10.1371/journal.pone.0091253 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1504977304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478773365</galeid><doaj_id>oai_doaj_org_article_cda01f9339b140bb92a4e09c988812c8</doaj_id><sourcerecordid>A478773365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-a1ce0785431af0fe340e662d07ebb9091daf7f91d5a81561894d572a3f6142553</originalsourceid><addsrcrecordid>eNp1Ul1rFDEUHUSxtfoPRAd8sQ-7JpNMZvIilMXaQkGQ-hzuZG622c4ka5Ip1D_hXzbrTksXlDzccHPOybkfRfGWkiVlDf208VNwMCy33uGSEEmrmj0rjqlk1UJUhD1_cj8qXsW4IaRmrRAvi6OKC9JKUh8Xv1c3EEAnDPYXJOtd6U3Zo0GdYmlducukAC5ufUgluL5MNsYJM-YOB78d0aUdTt_HZHVpbBd8tHHPGXHscsRSe9dPOoHTWAZcTwMkH8qPq_Pr76eLW-f1rZ9SGSDF18ULA0PEN3M8KX6cf7leXSyuvn29XJ1dLbSoZVoA1UiatuaMgiEGGScoRNWTBrtO5mb0YBqTQw0trQVtJe_rpgJmBOVVXbOT4v1edzv4qOZeRkVrwmXTMMIz4nKP6D1s1DbYEcK98mDV34QPawUh1zyg0j0QaiRjsqOcZAMVcCRSy7ZtaaXbrPV5_m3qRux1blqA4UD08MXZG7X2d4pJLhoussCHWSD4nxPG9B_LM2oN2ZV1xmcxPdqo1Rlv2gxiYlf68h-ofHocbZ4UGpvzBwS-J-g82xjQPBqnRO128cGM2u2imncx0949LfqR9LB87A_kL96k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504977304</pqid></control><display><type>article</type><title>Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tuggle, Katherine L ; Birket, Susan E ; Cui, Xiaoxia ; Hong, Jeong ; Warren, Joe ; Reid, Lara ; Chambers, Andre ; Ji, Diana ; Gamber, Kevin ; Chu, Kengyeh K ; Tearney, Guillermo ; Tang, Li Ping ; Fortenberry, James A ; Du, Ming ; Cadillac, Joan M ; Bedwell, David M ; Rowe, Steven M ; Sorscher, Eric J ; Fanucchi, Michelle V</creator><creatorcontrib>Tuggle, Katherine L ; Birket, Susan E ; Cui, Xiaoxia ; Hong, Jeong ; Warren, Joe ; Reid, Lara ; Chambers, Andre ; Ji, Diana ; Gamber, Kevin ; Chu, Kengyeh K ; Tearney, Guillermo ; Tang, Li Ping ; Fortenberry, James A ; Du, Ming ; Cadillac, Joan M ; Bedwell, David M ; Rowe, Steven M ; Sorscher, Eric J ; Fanucchi, Michelle V</creatorcontrib><description>Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous (CFTR+/-) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR-/-) pups. Nasal potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype, similar in many respects to that seen in CF patients. Young CFTR-/- rats exhibited histological abnormalities in the ileum and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR-/- males lacked the vas deferens bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in CFTR-/- animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects, premature truncation alleles, and channel gating abnormalities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0091253</identifier><identifier>PMID: 24608905</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Base Sequence ; Biology ; Constipation ; Cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - deficiency ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Dentition ; Environmental health ; Epithelium - metabolism ; Female ; Gene Knockout Techniques ; Genetic aspects ; Genetic engineering ; Health sciences ; Hospitals ; Humans ; Ileum - growth & development ; Ileum - physiology ; Ion Channel Gating ; Ion Transport ; Laboratories ; Male ; Medicine ; Membrane Potentials ; Microinjections ; Molecular Sequence Data ; Mucus - metabolism ; Nose - physiology ; Organogenesis ; Pathogenesis ; Pathology ; Public health ; Rats, Sprague-Dawley ; Rodents ; Studies ; Trachea - anatomy & histology ; Trachea - physiology ; Vas Deferens - abnormalities ; Zinc finger proteins</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e91253</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Tuggle et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Tuggle et al 2014 Tuggle et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-a1ce0785431af0fe340e662d07ebb9091daf7f91d5a81561894d572a3f6142553</citedby><cites>FETCH-LOGICAL-c659t-a1ce0785431af0fe340e662d07ebb9091daf7f91d5a81561894d572a3f6142553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946746/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946746/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24608905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuggle, Katherine L</creatorcontrib><creatorcontrib>Birket, Susan E</creatorcontrib><creatorcontrib>Cui, Xiaoxia</creatorcontrib><creatorcontrib>Hong, Jeong</creatorcontrib><creatorcontrib>Warren, Joe</creatorcontrib><creatorcontrib>Reid, Lara</creatorcontrib><creatorcontrib>Chambers, Andre</creatorcontrib><creatorcontrib>Ji, Diana</creatorcontrib><creatorcontrib>Gamber, Kevin</creatorcontrib><creatorcontrib>Chu, Kengyeh K</creatorcontrib><creatorcontrib>Tearney, Guillermo</creatorcontrib><creatorcontrib>Tang, Li Ping</creatorcontrib><creatorcontrib>Fortenberry, James A</creatorcontrib><creatorcontrib>Du, Ming</creatorcontrib><creatorcontrib>Cadillac, Joan M</creatorcontrib><creatorcontrib>Bedwell, David M</creatorcontrib><creatorcontrib>Rowe, Steven M</creatorcontrib><creatorcontrib>Sorscher, Eric J</creatorcontrib><creatorcontrib>Fanucchi, Michelle V</creatorcontrib><title>Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous (CFTR+/-) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR-/-) pups. Nasal potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype, similar in many respects to that seen in CF patients. Young CFTR-/- rats exhibited histological abnormalities in the ileum and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR-/- males lacked the vas deferens bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in CFTR-/- animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects, premature truncation alleles, and channel gating abnormalities.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Constipation</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - deficiency</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Dentition</subject><subject>Environmental health</subject><subject>Epithelium - metabolism</subject><subject>Female</subject><subject>Gene Knockout Techniques</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Health sciences</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Ileum - growth & development</subject><subject>Ileum - physiology</subject><subject>Ion Channel Gating</subject><subject>Ion Transport</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medicine</subject><subject>Membrane Potentials</subject><subject>Microinjections</subject><subject>Molecular Sequence Data</subject><subject>Mucus - metabolism</subject><subject>Nose - physiology</subject><subject>Organogenesis</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Public health</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Studies</subject><subject>Trachea - anatomy & histology</subject><subject>Trachea - physiology</subject><subject>Vas Deferens - abnormalities</subject><subject>Zinc finger proteins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul1rFDEUHUSxtfoPRAd8sQ-7JpNMZvIilMXaQkGQ-hzuZG622c4ka5Ip1D_hXzbrTksXlDzccHPOybkfRfGWkiVlDf208VNwMCy33uGSEEmrmj0rjqlk1UJUhD1_cj8qXsW4IaRmrRAvi6OKC9JKUh8Xv1c3EEAnDPYXJOtd6U3Zo0GdYmlducukAC5ufUgluL5MNsYJM-YOB78d0aUdTt_HZHVpbBd8tHHPGXHscsRSe9dPOoHTWAZcTwMkH8qPq_Pr76eLW-f1rZ9SGSDF18ULA0PEN3M8KX6cf7leXSyuvn29XJ1dLbSoZVoA1UiatuaMgiEGGScoRNWTBrtO5mb0YBqTQw0trQVtJe_rpgJmBOVVXbOT4v1edzv4qOZeRkVrwmXTMMIz4nKP6D1s1DbYEcK98mDV34QPawUh1zyg0j0QaiRjsqOcZAMVcCRSy7ZtaaXbrPV5_m3qRux1blqA4UD08MXZG7X2d4pJLhoussCHWSD4nxPG9B_LM2oN2ZV1xmcxPdqo1Rlv2gxiYlf68h-ofHocbZ4UGpvzBwS-J-g82xjQPBqnRO128cGM2u2imncx0949LfqR9LB87A_kL96k</recordid><startdate>20140307</startdate><enddate>20140307</enddate><creator>Tuggle, Katherine L</creator><creator>Birket, Susan E</creator><creator>Cui, Xiaoxia</creator><creator>Hong, Jeong</creator><creator>Warren, Joe</creator><creator>Reid, Lara</creator><creator>Chambers, Andre</creator><creator>Ji, Diana</creator><creator>Gamber, Kevin</creator><creator>Chu, Kengyeh K</creator><creator>Tearney, Guillermo</creator><creator>Tang, Li Ping</creator><creator>Fortenberry, James A</creator><creator>Du, Ming</creator><creator>Cadillac, Joan M</creator><creator>Bedwell, David M</creator><creator>Rowe, Steven M</creator><creator>Sorscher, Eric J</creator><creator>Fanucchi, Michelle V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140307</creationdate><title>Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats</title><author>Tuggle, Katherine L ; Birket, Susan E ; Cui, Xiaoxia ; Hong, Jeong ; Warren, Joe ; Reid, Lara ; Chambers, Andre ; Ji, Diana ; Gamber, Kevin ; Chu, Kengyeh K ; Tearney, Guillermo ; Tang, Li Ping ; Fortenberry, James A ; Du, Ming ; Cadillac, Joan M ; Bedwell, David M ; Rowe, Steven M ; Sorscher, Eric J ; Fanucchi, Michelle V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-a1ce0785431af0fe340e662d07ebb9091daf7f91d5a81561894d572a3f6142553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Constipation</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - deficiency</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Dentition</topic><topic>Environmental health</topic><topic>Epithelium - metabolism</topic><topic>Female</topic><topic>Gene Knockout Techniques</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Health sciences</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Ileum - growth & development</topic><topic>Ileum - physiology</topic><topic>Ion Channel Gating</topic><topic>Ion Transport</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medicine</topic><topic>Membrane Potentials</topic><topic>Microinjections</topic><topic>Molecular Sequence Data</topic><topic>Mucus - metabolism</topic><topic>Nose - physiology</topic><topic>Organogenesis</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Public health</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Studies</topic><topic>Trachea - anatomy & histology</topic><topic>Trachea - physiology</topic><topic>Vas Deferens - abnormalities</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuggle, Katherine L</creatorcontrib><creatorcontrib>Birket, Susan E</creatorcontrib><creatorcontrib>Cui, Xiaoxia</creatorcontrib><creatorcontrib>Hong, Jeong</creatorcontrib><creatorcontrib>Warren, Joe</creatorcontrib><creatorcontrib>Reid, Lara</creatorcontrib><creatorcontrib>Chambers, Andre</creatorcontrib><creatorcontrib>Ji, Diana</creatorcontrib><creatorcontrib>Gamber, Kevin</creatorcontrib><creatorcontrib>Chu, Kengyeh K</creatorcontrib><creatorcontrib>Tearney, Guillermo</creatorcontrib><creatorcontrib>Tang, Li Ping</creatorcontrib><creatorcontrib>Fortenberry, James A</creatorcontrib><creatorcontrib>Du, Ming</creatorcontrib><creatorcontrib>Cadillac, Joan M</creatorcontrib><creatorcontrib>Bedwell, David M</creatorcontrib><creatorcontrib>Rowe, Steven M</creatorcontrib><creatorcontrib>Sorscher, Eric J</creatorcontrib><creatorcontrib>Fanucchi, Michelle V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuggle, Katherine L</au><au>Birket, Susan E</au><au>Cui, Xiaoxia</au><au>Hong, Jeong</au><au>Warren, Joe</au><au>Reid, Lara</au><au>Chambers, Andre</au><au>Ji, Diana</au><au>Gamber, Kevin</au><au>Chu, Kengyeh K</au><au>Tearney, Guillermo</au><au>Tang, Li Ping</au><au>Fortenberry, James A</au><au>Du, Ming</au><au>Cadillac, Joan M</au><au>Bedwell, David M</au><au>Rowe, Steven M</au><au>Sorscher, Eric J</au><au>Fanucchi, Michelle V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-07</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e91253</spage><pages>e91253-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous (CFTR+/-) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR-/-) pups. Nasal potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype, similar in many respects to that seen in CF patients. Young CFTR-/- rats exhibited histological abnormalities in the ileum and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR-/- males lacked the vas deferens bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in CFTR-/- animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects, premature truncation alleles, and channel gating abnormalities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24608905</pmid><doi>10.1371/journal.pone.0091253</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-03, Vol.9 (3), p.e91253 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1504977304 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Base Sequence Biology Constipation Cystic fibrosis Cystic Fibrosis Transmembrane Conductance Regulator - deficiency Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Dentition Environmental health Epithelium - metabolism Female Gene Knockout Techniques Genetic aspects Genetic engineering Health sciences Hospitals Humans Ileum - growth & development Ileum - physiology Ion Channel Gating Ion Transport Laboratories Male Medicine Membrane Potentials Microinjections Molecular Sequence Data Mucus - metabolism Nose - physiology Organogenesis Pathogenesis Pathology Public health Rats, Sprague-Dawley Rodents Studies Trachea - anatomy & histology Trachea - physiology Vas Deferens - abnormalities Zinc finger proteins |
title | Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20defects%20in%20ion%20transport%20and%20tissue%20development%20in%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20(CFTR)-knockout%20rats&rft.jtitle=PloS%20one&rft.au=Tuggle,%20Katherine%20L&rft.date=2014-03-07&rft.volume=9&rft.issue=3&rft.spage=e91253&rft.pages=e91253-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0091253&rft_dat=%3Cgale_plos_%3EA478773365%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504977304&rft_id=info:pmid/24608905&rft_galeid=A478773365&rft_doaj_id=oai_doaj_org_article_cda01f9339b140bb92a4e09c988812c8&rfr_iscdi=true |