How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae

Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-03, Vol.9 (3), p.e90914-e90914
Hauptverfasser: Djukic, Marvin, Brzuszkiewicz, Elzbieta, Fünfhaus, Anne, Voss, Jörn, Gollnow, Kathleen, Poppinga, Lena, Liesegang, Heiko, Garcia-Gonzalez, Eva, Genersch, Elke, Daniel, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e90914
container_issue 3
container_start_page e90914
container_title PloS one
container_volume 9
creator Djukic, Marvin
Brzuszkiewicz, Elzbieta
Fünfhaus, Anne
Voss, Jörn
Gollnow, Kathleen
Poppinga, Lena
Liesegang, Heiko
Garcia-Gonzalez, Eva
Genersch, Elke
Daniel, Rolf
description Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.
doi_str_mv 10.1371/journal.pone.0090914
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1504543223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478776060</galeid><doaj_id>oai_doaj_org_article_c06ef5a7966d4604be0fc06b8abf4d51</doaj_id><sourcerecordid>A478776060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-77b60b0e97e4af3240acb2e9fd7acecd803122e3dbee86e60e27f600c07948273</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCwhITgocWxHbvmAWmagFWaNMSvV8txLo2LY3dxUth_j7tmU4P2gPxg6_y5753vfFn2PMfznIr83ToMndduvgke5hhLLHP2IDvOJSUzTjB9eHA-yp7EuMa4oAvOH2dHhBVSYs6PM3MefqM-oF_WOdQ3gJokd41KAOR0t9Xv0Qp8aK1Bm9CD7612SPsKbW03OPAGUAum0d7GNqJQoy8avC21SXJD3EvA0-xRrV2EZ-N-kv349PH72fns4vLz8uz0Yma4JP1MiJLjEoMUwHRNCcPalARkXQltwFQLTHNCgFYpuQUHjoGImmNssJBsQQQ9yV7udTcuRDXWJ6q8wKxglBCaiOWeqIJeq01nW91dq6CtujGEbqV011vjQBnMoS60kJxXjGNWAq6TrVzosmZVkSetD2O0oWyhMqk4nXYT0emNt41aha2ikjFJZRJ4Mwp04WqA2KvWRgPOaQ9huMm7IAXjdBfr1T_o_a8bqZVOD7C-Dimu2YmqUyYWQnDMcaLm91BpVZDanLpf22SfOLydOCSmhz_9Sg8xquW3r__PXv6csq8P2Aa065sY3NDb4OMUZHvQdCHGDuq7IudY7WbhthpqNwtqnIXk9uKwQXdOt5-f_gVB9wSc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504543223</pqid></control><display><type>article</type><title>How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Djukic, Marvin ; Brzuszkiewicz, Elzbieta ; Fünfhaus, Anne ; Voss, Jörn ; Gollnow, Kathleen ; Poppinga, Lena ; Liesegang, Heiko ; Garcia-Gonzalez, Eva ; Genersch, Elke ; Daniel, Rolf</creator><contributor>Bereswill, Stefan</contributor><creatorcontrib>Djukic, Marvin ; Brzuszkiewicz, Elzbieta ; Fünfhaus, Anne ; Voss, Jörn ; Gollnow, Kathleen ; Poppinga, Lena ; Liesegang, Heiko ; Garcia-Gonzalez, Eva ; Genersch, Elke ; Daniel, Rolf ; Bereswill, Stefan</creatorcontrib><description>Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0090914</identifier><identifier>PMID: 24599066</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Air bases ; American foulbrood ; Animals ; Apis mellifera ; Bacteria ; Bacterial Proteins - metabolism ; Bacterial Toxins - genetics ; Base Composition - genetics ; Bees ; Bees - microbiology ; Biology ; Biosynthetic Pathways - genetics ; Chromosomes, Bacterial - genetics ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; Collagen ; European honeybee ; Gene mutation ; Gene transfer ; Genes ; Genetic aspects ; Genetic Loci ; Genome, Bacterial - genetics ; Genomes ; Genomic Islands - genetics ; Genomics ; Genotypes ; Honey ; Infectious diseases ; Larva - microbiology ; Larvae ; Loci ; Models, Biological ; Multigene Family ; Mutation ; Nucleotide sequence ; Paenibacillus ; Paenibacillus - genetics ; Paenibacillus - pathogenicity ; Pathogenicity ; Pathogens ; Peptides ; Phages ; Polyketides ; Proteins ; Strains (organisms) ; Toxins ; Virulence ; Virulence (Microbiology) ; Virulence - genetics ; Virulence factors</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e90914-e90914</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Djukic et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Djukic et al 2014 Djukic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-77b60b0e97e4af3240acb2e9fd7acecd803122e3dbee86e60e27f600c07948273</citedby><cites>FETCH-LOGICAL-c692t-77b60b0e97e4af3240acb2e9fd7acecd803122e3dbee86e60e27f600c07948273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944939/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944939/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24599066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bereswill, Stefan</contributor><creatorcontrib>Djukic, Marvin</creatorcontrib><creatorcontrib>Brzuszkiewicz, Elzbieta</creatorcontrib><creatorcontrib>Fünfhaus, Anne</creatorcontrib><creatorcontrib>Voss, Jörn</creatorcontrib><creatorcontrib>Gollnow, Kathleen</creatorcontrib><creatorcontrib>Poppinga, Lena</creatorcontrib><creatorcontrib>Liesegang, Heiko</creatorcontrib><creatorcontrib>Garcia-Gonzalez, Eva</creatorcontrib><creatorcontrib>Genersch, Elke</creatorcontrib><creatorcontrib>Daniel, Rolf</creatorcontrib><title>How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.</description><subject>Air bases</subject><subject>American foulbrood</subject><subject>Animals</subject><subject>Apis mellifera</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - genetics</subject><subject>Base Composition - genetics</subject><subject>Bees</subject><subject>Bees - microbiology</subject><subject>Biology</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>Collagen</subject><subject>European honeybee</subject><subject>Gene mutation</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Loci</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomic Islands - genetics</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Honey</subject><subject>Infectious diseases</subject><subject>Larva - microbiology</subject><subject>Larvae</subject><subject>Loci</subject><subject>Models, Biological</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Paenibacillus</subject><subject>Paenibacillus - genetics</subject><subject>Paenibacillus - pathogenicity</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Phages</subject><subject>Polyketides</subject><subject>Proteins</subject><subject>Strains (organisms)</subject><subject>Toxins</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Virulence - genetics</subject><subject>Virulence factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCwhITgocWxHbvmAWmagFWaNMSvV8txLo2LY3dxUth_j7tmU4P2gPxg6_y5753vfFn2PMfznIr83ToMndduvgke5hhLLHP2IDvOJSUzTjB9eHA-yp7EuMa4oAvOH2dHhBVSYs6PM3MefqM-oF_WOdQ3gJokd41KAOR0t9Xv0Qp8aK1Bm9CD7612SPsKbW03OPAGUAum0d7GNqJQoy8avC21SXJD3EvA0-xRrV2EZ-N-kv349PH72fns4vLz8uz0Yma4JP1MiJLjEoMUwHRNCcPalARkXQltwFQLTHNCgFYpuQUHjoGImmNssJBsQQQ9yV7udTcuRDXWJ6q8wKxglBCaiOWeqIJeq01nW91dq6CtujGEbqV011vjQBnMoS60kJxXjGNWAq6TrVzosmZVkSetD2O0oWyhMqk4nXYT0emNt41aha2ikjFJZRJ4Mwp04WqA2KvWRgPOaQ9huMm7IAXjdBfr1T_o_a8bqZVOD7C-Dimu2YmqUyYWQnDMcaLm91BpVZDanLpf22SfOLydOCSmhz_9Sg8xquW3r__PXv6csq8P2Aa065sY3NDb4OMUZHvQdCHGDuq7IudY7WbhthpqNwtqnIXk9uKwQXdOt5-f_gVB9wSc</recordid><startdate>20140305</startdate><enddate>20140305</enddate><creator>Djukic, Marvin</creator><creator>Brzuszkiewicz, Elzbieta</creator><creator>Fünfhaus, Anne</creator><creator>Voss, Jörn</creator><creator>Gollnow, Kathleen</creator><creator>Poppinga, Lena</creator><creator>Liesegang, Heiko</creator><creator>Garcia-Gonzalez, Eva</creator><creator>Genersch, Elke</creator><creator>Daniel, Rolf</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140305</creationdate><title>How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae</title><author>Djukic, Marvin ; Brzuszkiewicz, Elzbieta ; Fünfhaus, Anne ; Voss, Jörn ; Gollnow, Kathleen ; Poppinga, Lena ; Liesegang, Heiko ; Garcia-Gonzalez, Eva ; Genersch, Elke ; Daniel, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-77b60b0e97e4af3240acb2e9fd7acecd803122e3dbee86e60e27f600c07948273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air bases</topic><topic>American foulbrood</topic><topic>Animals</topic><topic>Apis mellifera</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - genetics</topic><topic>Base Composition - genetics</topic><topic>Bees</topic><topic>Bees - microbiology</topic><topic>Biology</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>Collagen</topic><topic>European honeybee</topic><topic>Gene mutation</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Loci</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomic Islands - genetics</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Honey</topic><topic>Infectious diseases</topic><topic>Larva - microbiology</topic><topic>Larvae</topic><topic>Loci</topic><topic>Models, Biological</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Paenibacillus</topic><topic>Paenibacillus - genetics</topic><topic>Paenibacillus - pathogenicity</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Phages</topic><topic>Polyketides</topic><topic>Proteins</topic><topic>Strains (organisms)</topic><topic>Toxins</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Virulence - genetics</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djukic, Marvin</creatorcontrib><creatorcontrib>Brzuszkiewicz, Elzbieta</creatorcontrib><creatorcontrib>Fünfhaus, Anne</creatorcontrib><creatorcontrib>Voss, Jörn</creatorcontrib><creatorcontrib>Gollnow, Kathleen</creatorcontrib><creatorcontrib>Poppinga, Lena</creatorcontrib><creatorcontrib>Liesegang, Heiko</creatorcontrib><creatorcontrib>Garcia-Gonzalez, Eva</creatorcontrib><creatorcontrib>Genersch, Elke</creatorcontrib><creatorcontrib>Daniel, Rolf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djukic, Marvin</au><au>Brzuszkiewicz, Elzbieta</au><au>Fünfhaus, Anne</au><au>Voss, Jörn</au><au>Gollnow, Kathleen</au><au>Poppinga, Lena</au><au>Liesegang, Heiko</au><au>Garcia-Gonzalez, Eva</au><au>Genersch, Elke</au><au>Daniel, Rolf</au><au>Bereswill, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-05</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e90914</spage><epage>e90914</epage><pages>e90914-e90914</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24599066</pmid><doi>10.1371/journal.pone.0090914</doi><tpages>e90914</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-03, Vol.9 (3), p.e90914-e90914
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1504543223
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Air bases
American foulbrood
Animals
Apis mellifera
Bacteria
Bacterial Proteins - metabolism
Bacterial Toxins - genetics
Base Composition - genetics
Bees
Bees - microbiology
Biology
Biosynthetic Pathways - genetics
Chromosomes, Bacterial - genetics
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
Collagen
European honeybee
Gene mutation
Gene transfer
Genes
Genetic aspects
Genetic Loci
Genome, Bacterial - genetics
Genomes
Genomic Islands - genetics
Genomics
Genotypes
Honey
Infectious diseases
Larva - microbiology
Larvae
Loci
Models, Biological
Multigene Family
Mutation
Nucleotide sequence
Paenibacillus
Paenibacillus - genetics
Paenibacillus - pathogenicity
Pathogenicity
Pathogens
Peptides
Phages
Polyketides
Proteins
Strains (organisms)
Toxins
Virulence
Virulence (Microbiology)
Virulence - genetics
Virulence factors
title How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20kill%20the%20honey%20bee%20larva:%20genomic%20potential%20and%20virulence%20mechanisms%20of%20Paenibacillus%20larvae&rft.jtitle=PloS%20one&rft.au=Djukic,%20Marvin&rft.date=2014-03-05&rft.volume=9&rft.issue=3&rft.spage=e90914&rft.epage=e90914&rft.pages=e90914-e90914&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0090914&rft_dat=%3Cgale_plos_%3EA478776060%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504543223&rft_id=info:pmid/24599066&rft_galeid=A478776060&rft_doaj_id=oai_doaj_org_article_c06ef5a7966d4604be0fc06b8abf4d51&rfr_iscdi=true